Gaussian Mixture Model and Double-Weighted Deep Neural Networks for Data Augmentation Soft Sensing

Xiaoyu Jiang, Le Yao, Zeyu Yang, Zhihuan Song, Bingbing Shen
{"title":"Gaussian Mixture Model and Double-Weighted Deep Neural Networks for Data Augmentation Soft Sensing","authors":"Xiaoyu Jiang, Le Yao, Zeyu Yang, Zhihuan Song, Bingbing Shen","doi":"10.1109/DDCLS58216.2023.10166693","DOIUrl":null,"url":null,"abstract":"In practice, data-driven soft sensors often face data shortages in modeling. Data augmentation technology has offered a feasible solution for this problem in recent years. However, how to better use virtual data for data augmentation is still an open topic. In this paper, a novel data augmentation soft sensing method is proposed. It uses Gaussian mixture models (GMM) to generate virtual data for the training dataset, and developed a double-weighted neural network (dwDNN) for weighted regression modeling. On top of that, the Bayesian optimization algorithm is applied to the weight selection of dwDNN to further enhance the efficiency and effectiveness of GMM -dwDNN on virtual data. In the end, a real industrial case is used to illustrate the superiority of the proposed approach in soft sensing.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In practice, data-driven soft sensors often face data shortages in modeling. Data augmentation technology has offered a feasible solution for this problem in recent years. However, how to better use virtual data for data augmentation is still an open topic. In this paper, a novel data augmentation soft sensing method is proposed. It uses Gaussian mixture models (GMM) to generate virtual data for the training dataset, and developed a double-weighted neural network (dwDNN) for weighted regression modeling. On top of that, the Bayesian optimization algorithm is applied to the weight selection of dwDNN to further enhance the efficiency and effectiveness of GMM -dwDNN on virtual data. In the end, a real industrial case is used to illustrate the superiority of the proposed approach in soft sensing.
数据增强软测量的高斯混合模型和双加权深度神经网络
在实际应用中,数据驱动软传感器在建模过程中经常面临数据不足的问题。近年来,数据增强技术为这一问题提供了可行的解决方案。然而,如何更好地利用虚拟数据进行数据扩充仍然是一个开放的话题。提出了一种新的数据增强软测量方法。利用高斯混合模型(GMM)生成训练数据集的虚拟数据,并开发了一种双加权神经网络(dwDNN)进行加权回归建模。在此基础上,将贝叶斯优化算法应用于dwDNN的权值选择,进一步提高GMM -dwDNN对虚拟数据的处理效率和有效性。最后,通过一个实际的工业案例说明了该方法在软测量中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信