High precision differentiation of FEM approximate solutions

D. Omeragic
{"title":"High precision differentiation of FEM approximate solutions","authors":"D. Omeragic","doi":"10.1109/APS.1997.631811","DOIUrl":null,"url":null,"abstract":"This paper presents the high precision differentiation method based on Green's second identity. The technique is compared to several recent methods based on local smoothing and superconvergent patch recovery (SPR). The methodology is extended to 3D problems described by scalar Poisson equation, using the sphere as a base domain for extraction of derivatives. Analytic verification and error sensitivity analysis is performed. The alternative approach employing fundamental solutions to the Dirichlet problem in place of Green's functions is also outlined. The technique is suited to postprocessing of finite element solutions, or may be applied to other numerical approximate solutions.","PeriodicalId":283897,"journal":{"name":"IEEE Antennas and Propagation Society International Symposium 1997. Digest","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Antennas and Propagation Society International Symposium 1997. Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.1997.631811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the high precision differentiation method based on Green's second identity. The technique is compared to several recent methods based on local smoothing and superconvergent patch recovery (SPR). The methodology is extended to 3D problems described by scalar Poisson equation, using the sphere as a base domain for extraction of derivatives. Analytic verification and error sensitivity analysis is performed. The alternative approach employing fundamental solutions to the Dirichlet problem in place of Green's functions is also outlined. The technique is suited to postprocessing of finite element solutions, or may be applied to other numerical approximate solutions.
有限元近似解的高精度微分
提出了一种基于格林第二恒等式的高精度微分方法。将该方法与几种基于局部平滑和超收敛补丁恢复(SPR)的新方法进行了比较。将该方法推广到用标量泊松方程描述的三维问题,以球为基域提取导数。进行了分析验证和误差灵敏度分析。本文还概述了采用狄利克雷问题的基本解来代替格林函数的替代方法。该技术适用于有限元解的后处理,也可应用于其他数值近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信