Recurrent Deep-Stacking Networks for sequence classification

H. Palangi, L. Deng, R. Ward
{"title":"Recurrent Deep-Stacking Networks for sequence classification","authors":"H. Palangi, L. Deng, R. Ward","doi":"10.1109/ChinaSIP.2014.6889295","DOIUrl":null,"url":null,"abstract":"Deep Stacking Networks (DSNs) are constructed by stacking shallow feed-forward neural networks on top of each other using concatenated features derived from the lower modules of the DSN and the raw input data. DSNs do not have recurrent connections, making them less effective to model and classify input data with temporal dependencies. In this paper, we embed recurrent connections into the DSN, giving rise to Recurrent Deep Stacking Networks (R-DSNs). Each module of the R-DSN consists of a special form of recurrent neural networks. Generalizing from the earlier DSN, the use of linearity in the output units of the R-DSN enables us to derive a closed form for computing the gradient of the cost function with respect to all network matrices without backpropagating errors. Each module in the R-DSN is initialized with an echo state network, where the input and recurrent weights are fixed to have the echo state property. Then all connection weights within the module are fine tuned using batch-mode gradient descent where the gradient takes an analytical form. Experiments are performed on the TIMIT dataset for frame-level phone state classification with 183 classes. The results show that the R-DSN gives higher classification accuracy over a single recurrent neural network without stacking.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep Stacking Networks (DSNs) are constructed by stacking shallow feed-forward neural networks on top of each other using concatenated features derived from the lower modules of the DSN and the raw input data. DSNs do not have recurrent connections, making them less effective to model and classify input data with temporal dependencies. In this paper, we embed recurrent connections into the DSN, giving rise to Recurrent Deep Stacking Networks (R-DSNs). Each module of the R-DSN consists of a special form of recurrent neural networks. Generalizing from the earlier DSN, the use of linearity in the output units of the R-DSN enables us to derive a closed form for computing the gradient of the cost function with respect to all network matrices without backpropagating errors. Each module in the R-DSN is initialized with an echo state network, where the input and recurrent weights are fixed to have the echo state property. Then all connection weights within the module are fine tuned using batch-mode gradient descent where the gradient takes an analytical form. Experiments are performed on the TIMIT dataset for frame-level phone state classification with 183 classes. The results show that the R-DSN gives higher classification accuracy over a single recurrent neural network without stacking.
用于序列分类的循环深度堆叠网络
深度堆叠网络(DSN)是利用DSN下层模块和原始输入数据的连接特征,将浅层前馈神经网络相互叠加而成。dsn没有循环连接,这使得它们对具有时间依赖性的输入数据进行建模和分类的效率较低。在本文中,我们将循环连接嵌入到DSN中,从而产生循环深度堆叠网络(r -DSN)。R-DSN的每个模块由一种特殊形式的递归神经网络组成。从早期的DSN推广,在R-DSN的输出单元中使用线性,使我们能够推导出一个封闭的形式,用于计算成本函数相对于所有网络矩阵的梯度,而不存在反向传播误差。R-DSN中的每个模块初始化一个回波状态网络,其中固定输入和循环权值,使其具有回波状态属性。然后使用批处理模式梯度下降对模块内的所有连接权重进行微调,其中梯度采用解析形式。在TIMIT数据集上进行了183个类的帧级电话状态分类实验。结果表明,在不叠加的情况下,R-DSN在单个递归神经网络上具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信