Reconfigurable Multi-Input Adder Design for Deep Neural Network Accelerators

Hossein Moradian, Sujeong Jo, Kiyoung Choi
{"title":"Reconfigurable Multi-Input Adder Design for Deep Neural Network Accelerators","authors":"Hossein Moradian, Sujeong Jo, Kiyoung Choi","doi":"10.1109/ISOCC.2018.8649943","DOIUrl":null,"url":null,"abstract":"This paper proposes two efficient designs of reconfigurable multi-input adders for deep neural network accelerators. The reconfigurability allows us to use resources in different ways optimized to different applications. The designed adders enable bit-width adaptive computing in neural network layers, which improves computing throughput. The proposed designs are implemented with 45nm CMOS TSMC library and the results show that the proposed modules achieve throughput much higher than that of conventional designs even with the reconfigurability without significant hardware overhead.","PeriodicalId":127156,"journal":{"name":"2018 International SoC Design Conference (ISOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2018.8649943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes two efficient designs of reconfigurable multi-input adders for deep neural network accelerators. The reconfigurability allows us to use resources in different ways optimized to different applications. The designed adders enable bit-width adaptive computing in neural network layers, which improves computing throughput. The proposed designs are implemented with 45nm CMOS TSMC library and the results show that the proposed modules achieve throughput much higher than that of conventional designs even with the reconfigurability without significant hardware overhead.
深度神经网络加速器的可重构多输入加法器设计
本文提出了两种用于深度神经网络加速器的可重构多输入加法器的有效设计。可重构性允许我们以针对不同应用优化的不同方式使用资源。设计的加法器实现了神经网络层的位宽自适应计算,提高了计算吞吐量。在45nm CMOS TSMC库上实现了所提出的设计,结果表明,在没有显著硬件开销的情况下,即使具有可重构性,所提出的模块的吞吐量也大大高于传统设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信