Improving dictionary learning using the Itakura-Saito divergence

Zhenni Li, Shuxue Ding, Yujie Li, Zunyi Tang, Wuhui Chen
{"title":"Improving dictionary learning using the Itakura-Saito divergence","authors":"Zhenni Li, Shuxue Ding, Yujie Li, Zunyi Tang, Wuhui Chen","doi":"10.1109/ChinaSIP.2014.6889341","DOIUrl":null,"url":null,"abstract":"This paper presents an improved and efficient algorithm for overcomplete, nonnegative dictionary learning for nonnegative sparse representation (NNSR) of signals. We adopt the Itakura-Saito (IS) divergence as the error measure, which is quite different from the conventional dictionary learning methods using the Euclidean (EUC) distance as the error measure. In addition, for enforcing the sparseness of coefficient matrix, we impose ℓ1-norm minimization as the sparsity constraint. Numerical experiments on recovery of a dictionary show that the proposed dictionary learning algorithm performs better than other currently available algorithms which use Euclidean distance as the error measure.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an improved and efficient algorithm for overcomplete, nonnegative dictionary learning for nonnegative sparse representation (NNSR) of signals. We adopt the Itakura-Saito (IS) divergence as the error measure, which is quite different from the conventional dictionary learning methods using the Euclidean (EUC) distance as the error measure. In addition, for enforcing the sparseness of coefficient matrix, we impose ℓ1-norm minimization as the sparsity constraint. Numerical experiments on recovery of a dictionary show that the proposed dictionary learning algorithm performs better than other currently available algorithms which use Euclidean distance as the error measure.
利用Itakura-Saito散度改进字典学习
针对信号的非负稀疏表示(NNSR),提出了一种改进的、高效的过完备非负字典学习算法。我们采用Itakura-Saito (IS)散度作为误差度量,这与传统的以欧几里得(EUC)距离作为误差度量的字典学习方法有很大不同。此外,为了增强系数矩阵的稀疏性,我们将1-范数最小化作为稀疏性约束。对字典恢复的数值实验表明,本文提出的字典学习算法比现有的以欧氏距离作为误差度量的算法有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信