D. Esseni, M. Mastrapasqua, G. Celler, F. Baumann, C. Fiegna, L. Selmi, E. Sangiorgi
{"title":"Low field mobility of ultra-thin SOI N- and P-MOSFETs: Measurements and implications on the performance of ultra-short MOSFETs","authors":"D. Esseni, M. Mastrapasqua, G. Celler, F. Baumann, C. Fiegna, L. Selmi, E. Sangiorgi","doi":"10.1109/IEDM.2000.904408","DOIUrl":null,"url":null,"abstract":"Electron and hole effective mobilities of ultra-thin SOI N- and P-MOSFETs have been measured at different temperatures using a special test structure able to circumvent parasitic resistance effects. At large inversion densities (N/sub inv/) ultra-thin SOI mobility can be higher than in heavily doped bulk MOS due a lower effective field and it is largely insensitive to silicon thickness (T/sub SI/). However, at small Ni/sub inv/ the mobility is clearly reduced for decreasing T/sub SI/. The effective mobility data are used to study the implications for ultra-short MOS transistor performance at device simulation level.","PeriodicalId":276800,"journal":{"name":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2000.904408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89
Abstract
Electron and hole effective mobilities of ultra-thin SOI N- and P-MOSFETs have been measured at different temperatures using a special test structure able to circumvent parasitic resistance effects. At large inversion densities (N/sub inv/) ultra-thin SOI mobility can be higher than in heavily doped bulk MOS due a lower effective field and it is largely insensitive to silicon thickness (T/sub SI/). However, at small Ni/sub inv/ the mobility is clearly reduced for decreasing T/sub SI/. The effective mobility data are used to study the implications for ultra-short MOS transistor performance at device simulation level.