Initial results in underwater single image dehazing

Nicholas Carlevaris-Bianco, A. Mohan, R. Eustice
{"title":"Initial results in underwater single image dehazing","authors":"Nicholas Carlevaris-Bianco, A. Mohan, R. Eustice","doi":"10.1109/OCEANS.2010.5664428","DOIUrl":null,"url":null,"abstract":"As light is transmitted from subject to observer it is absorbed and scattered by the medium it passes through. In mediums with large suspended particles, such as fog or turbid water, the effect of scattering can drastically decrease the quality of images. In this paper we present an algorithm for removing the effects of light scattering, referred to as dehazing, in underwater images. Our key contribution is to propose a simple, yet effective, prior that exploits the strong difference in attenuation between the three image color channels in water to estimate the depth of the scene. We then use this estimate to reduce the spatially varying effect of haze in the image. Our method works with a single image and does not require any specialized hardware or prior knowledge of the scene. As a by-product of the dehazing process, an up-to-scale depth map of the scene is produced. We present results over multiple real underwater images and over a controlled test set where the target distance and true colors are known.","PeriodicalId":363534,"journal":{"name":"OCEANS 2010 MTS/IEEE SEATTLE","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"353","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2010 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2010.5664428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 353

Abstract

As light is transmitted from subject to observer it is absorbed and scattered by the medium it passes through. In mediums with large suspended particles, such as fog or turbid water, the effect of scattering can drastically decrease the quality of images. In this paper we present an algorithm for removing the effects of light scattering, referred to as dehazing, in underwater images. Our key contribution is to propose a simple, yet effective, prior that exploits the strong difference in attenuation between the three image color channels in water to estimate the depth of the scene. We then use this estimate to reduce the spatially varying effect of haze in the image. Our method works with a single image and does not require any specialized hardware or prior knowledge of the scene. As a by-product of the dehazing process, an up-to-scale depth map of the scene is produced. We present results over multiple real underwater images and over a controlled test set where the target distance and true colors are known.
初步结果在水下单幅图像去雾
当光从物体传输到观察者时,它被所经过的介质吸收和散射。在有大悬浮粒子的介质中,如雾或浑浊的水,散射的影响会大大降低图像的质量。在本文中,我们提出了一种在水下图像中去除光散射效应的算法,称为去雾。我们的主要贡献是提出了一种简单而有效的先验方法,利用水中三种图像颜色通道之间衰减的强烈差异来估计场景的深度。然后我们使用这个估计来减少图像中雾霾的空间变化效果。我们的方法适用于单个图像,不需要任何专门的硬件或场景的先验知识。作为除雾过程的副产品,产生了现场的按比例深度图。我们通过多个真实的水下图像和一个已知目标距离和真实颜色的受控测试集呈现结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信