Sebastian Simon, Ozlem Karaca, Jérôme Kirscher, Alexander W. Rath, G. Pelz, L. Maurer
{"title":"Safety-oriented mixed-signal verification of automotive power devices in a UVM environment","authors":"Sebastian Simon, Ozlem Karaca, Jérôme Kirscher, Alexander W. Rath, G. Pelz, L. Maurer","doi":"10.1109/SMACD.2016.7520718","DOIUrl":null,"url":null,"abstract":"The complexity of automotive applications is continuously increasing, leading to a growing demand for methodologies that offer comprehensive mixed-signal verification. However, compared to the highly automated verification methodologies in the digital domain, pre-silicon verification in the analog domain still implies a substantial amount of manual work and computational effort. Apart from this, automotive applications most often have to comply with functional safety standards and therefore their robustness concerning safety-critical faults needs to be proven. This is normally ensured by performing safety verification with faults being purposefully injected into the designs. In this paper we present a methodology that enables a regression-based mixed-signal verification combined with an existing approach for analog safety analysis. Both concepts are applied to an automotive design, in which faults have been injected, in order to demonstrate their capabilities.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The complexity of automotive applications is continuously increasing, leading to a growing demand for methodologies that offer comprehensive mixed-signal verification. However, compared to the highly automated verification methodologies in the digital domain, pre-silicon verification in the analog domain still implies a substantial amount of manual work and computational effort. Apart from this, automotive applications most often have to comply with functional safety standards and therefore their robustness concerning safety-critical faults needs to be proven. This is normally ensured by performing safety verification with faults being purposefully injected into the designs. In this paper we present a methodology that enables a regression-based mixed-signal verification combined with an existing approach for analog safety analysis. Both concepts are applied to an automotive design, in which faults have been injected, in order to demonstrate their capabilities.