An Associative Memory with oscillatory CNN arrays using spin torque oscillator cells and spin-wave interactions architecture and End-to-end Simulator

T. Roska, A. Horváth, A. Stubendek, F. Corinto, G. Csaba, W. Porod, T. Shibata, G. Bourianoff
{"title":"An Associative Memory with oscillatory CNN arrays using spin torque oscillator cells and spin-wave interactions architecture and End-to-end Simulator","authors":"T. Roska, A. Horváth, A. Stubendek, F. Corinto, G. Csaba, W. Porod, T. Shibata, G. Bourianoff","doi":"10.1109/CNNA.2012.6331463","DOIUrl":null,"url":null,"abstract":"An Associative Memory is built by three consecutive components: (1) a CMOS preprocessing unit generating input feature vectors from picture inputs, (2) an AM cluster generating signature outputs composed of spintronic oscillator (STO) cells and local spin-wave interactions, as an oscillatory CNN (O-CNN) array unit, applied several times arranged in space, and (3) a classification unit (CMOS). The end to end design of the preprocessing unit, the interacting O-CNN arrays, and the classification unit is embedded in a learning and optimization procedure where the geometric distances between the STOs in the O-CNN arrays play a crucial role. The O-CNN array has an input vector as a 1D array of oscillator frequencies, and the synchronized O-CNN array codes the output as the phases of the output 1D array. The typical O-CNN array has 1-3 rows of STOs. Simplified STO and interaction macro models are used. A typical example is shown using an End-to-end Simulator.","PeriodicalId":387536,"journal":{"name":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Cellular Nanoscale Networks and their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2012.6331463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

An Associative Memory is built by three consecutive components: (1) a CMOS preprocessing unit generating input feature vectors from picture inputs, (2) an AM cluster generating signature outputs composed of spintronic oscillator (STO) cells and local spin-wave interactions, as an oscillatory CNN (O-CNN) array unit, applied several times arranged in space, and (3) a classification unit (CMOS). The end to end design of the preprocessing unit, the interacting O-CNN arrays, and the classification unit is embedded in a learning and optimization procedure where the geometric distances between the STOs in the O-CNN arrays play a crucial role. The O-CNN array has an input vector as a 1D array of oscillator frequencies, and the synchronized O-CNN array codes the output as the phases of the output 1D array. The typical O-CNN array has 1-3 rows of STOs. Simplified STO and interaction macro models are used. A typical example is shown using an End-to-end Simulator.
基于自旋力矩振荡器单元、自旋波相互作用结构和端到端模拟器的振荡CNN阵列联想存储器
联想记忆由三个连续组件组成:(1)从图像输入生成输入特征向量的CMOS预处理单元;(2)由自旋电子振荡器(STO)单元和局部自旋波相互作用组成的AM簇生成签名输出,作为振荡CNN (O-CNN)阵列单元,在空间中多次应用;(3)分类单元(CMOS)。预处理单元、相互作用的O-CNN阵列和分类单元的端到端设计嵌入到一个学习和优化过程中,其中O-CNN阵列中STOs之间的几何距离起着至关重要的作用。O-CNN阵列的输入矢量为振荡器频率的一维阵列,同步的O-CNN阵列将输出编码为输出一维阵列的相位。典型的O-CNN阵列有1-3行sto。使用简化的STO和交互宏模型。使用端到端模拟器展示了一个典型的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信