VANET IR-CAS: utilizing IR techniques in developing context aware system for VANET

L. Nassar, F. Karray, M. Kamel, F. Sattar
{"title":"VANET IR-CAS: utilizing IR techniques in developing context aware system for VANET","authors":"L. Nassar, F. Karray, M. Kamel, F. Sattar","doi":"10.1145/2386958.2386973","DOIUrl":null,"url":null,"abstract":"The proposed VANET IR-CAS is a context aware system that utilizes information retrieval (IR) techniques, such as indexing, document scoring and document similarity, to enhance context aware information dissemination in VANET. It uses a hybrid context model; spatial model for service filtering, ontology model for context reasoning and knowledge sharing, markup model for file exchange, and situational model for safety and convenience services. Its VANET OWL ontology managed by Jena semantic web framework succeeded in formalizing the semantics of VANET context domain and heightened the system abstraction level. Relevance of dispatched information to prospective recipients is enhanced by employing IR techniques and partial relevance. For commercial services, we used the hybrid vehicular communication (HVC) to increase the decentralized processing, exploit the vehicle processing power and increase user satisfaction and privacy. V2V is used for safety and convenience services where the level of abstraction has increased by using high level situation context attributes. In addition, more precise application notifications are now feasible after improving reasoning about situation certainty and severity. Hence, the main novelty of VANET IR-CAS is that it provides a highly abstract hybrid context model with IR based processing that raises the notification relevance, certainty and precision beside increasing decentralization and user satisfaction.","PeriodicalId":254708,"journal":{"name":"Proceedings of the second ACM international symposium on Design and analysis of intelligent vehicular networks and applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the second ACM international symposium on Design and analysis of intelligent vehicular networks and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2386958.2386973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The proposed VANET IR-CAS is a context aware system that utilizes information retrieval (IR) techniques, such as indexing, document scoring and document similarity, to enhance context aware information dissemination in VANET. It uses a hybrid context model; spatial model for service filtering, ontology model for context reasoning and knowledge sharing, markup model for file exchange, and situational model for safety and convenience services. Its VANET OWL ontology managed by Jena semantic web framework succeeded in formalizing the semantics of VANET context domain and heightened the system abstraction level. Relevance of dispatched information to prospective recipients is enhanced by employing IR techniques and partial relevance. For commercial services, we used the hybrid vehicular communication (HVC) to increase the decentralized processing, exploit the vehicle processing power and increase user satisfaction and privacy. V2V is used for safety and convenience services where the level of abstraction has increased by using high level situation context attributes. In addition, more precise application notifications are now feasible after improving reasoning about situation certainty and severity. Hence, the main novelty of VANET IR-CAS is that it provides a highly abstract hybrid context model with IR based processing that raises the notification relevance, certainty and precision beside increasing decentralization and user satisfaction.
VANET IR- cas:利用IR技术开发VANET的上下文感知系统
本文提出的VANET IR- cas是一个上下文感知系统,它利用信息检索(IR)技术,如索引、文档评分和文档相似度,来增强VANET中的上下文感知信息传播。它使用混合上下文模型;用于服务过滤的空间模型,用于上下文推理和知识共享的本体模型,用于文件交换的标记模型,以及用于安全性和便捷性服务的情景模型。Jena语义web框架管理的VANET OWL本体成功地形式化了VANET上下文域的语义,提高了系统的抽象层次。通过使用IR技术和部分相关性,增强了对潜在接收者发送信息的相关性。对于商业服务,我们采用混合车辆通信(HVC)来增加分散处理,挖掘车辆处理能力,提高用户满意度和隐私性。V2V用于安全性和便利性服务,其中通过使用高级情景上下文属性提高了抽象级别。此外,在改进了对情况确定性和严重性的推理后,更精确的应用程序通知现在是可行的。因此,VANET IR- cas的主要新颖之处在于它提供了一个高度抽象的混合上下文模型,该模型具有基于IR的处理,除了增加分散和用户满意度外,还提高了通知的相关性、确定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信