Secrecy Outage Performance and Deep Learning Evaluation of Multihop Energy Harvesting IoT Networks over Nakagami-m Fading Channels

Toan-Van Nguyen, T. Tran, Kyusung Shim, Thien Huynh-The, Beongku An
{"title":"Secrecy Outage Performance and Deep Learning Evaluation of Multihop Energy Harvesting IoT Networks over Nakagami-m Fading Channels","authors":"Toan-Van Nguyen, T. Tran, Kyusung Shim, Thien Huynh-The, Beongku An","doi":"10.1109/IS3C50286.2020.00132","DOIUrl":null,"url":null,"abstract":"In this paper, we study the secrecy outage performance of multi-hop energy harvesting Internet-of-Things (IoT) networks, where all IoT devices harvest energy from a power beacon for conveying a confidential message to multiple legitimate users in the presence of an eavesdropper. To enhance the secrecy outage probability (SOP), we propose and analyze the best relay selection (BRE) and best-path selection (BPA) schemes under Nakagami-m fading environments. Based on the analysis results, we develop a deep learning model for the proposed schemes to evaluate the system SOP. Numerical results show that the BPA scheme greatly outperforms the BRE one, showing the efficiency of the best-path selection approach. Moreover, the deep learning model is capable of predicting the SOP of all schemes with high accuracy while it drastically reduces the execution time, arising a real-time configuration for multi-hop energy harvesting IoT networks.","PeriodicalId":143430,"journal":{"name":"2020 International Symposium on Computer, Consumer and Control (IS3C)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Computer, Consumer and Control (IS3C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS3C50286.2020.00132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the secrecy outage performance of multi-hop energy harvesting Internet-of-Things (IoT) networks, where all IoT devices harvest energy from a power beacon for conveying a confidential message to multiple legitimate users in the presence of an eavesdropper. To enhance the secrecy outage probability (SOP), we propose and analyze the best relay selection (BRE) and best-path selection (BPA) schemes under Nakagami-m fading environments. Based on the analysis results, we develop a deep learning model for the proposed schemes to evaluate the system SOP. Numerical results show that the BPA scheme greatly outperforms the BRE one, showing the efficiency of the best-path selection approach. Moreover, the deep learning model is capable of predicting the SOP of all schemes with high accuracy while it drastically reduces the execution time, arising a real-time configuration for multi-hop energy harvesting IoT networks.
基于Nakagami-m衰落信道的多跳能量收集物联网保密中断性能及深度学习评估
在本文中,我们研究了多跳能量收集物联网(IoT)网络的保密中断性能,其中所有物联网设备在窃听者存在的情况下从电源信标收集能量,以便将机密消息传递给多个合法用户。为了提高保密中断概率(SOP),我们提出并分析了在Nakagami-m衰落环境下的最佳中继选择(BRE)和最佳路径选择(BPA)方案。基于分析结果,我们为所提出的方案建立了一个深度学习模型来评估系统SOP。数值结果表明,BPA方案明显优于BRE方案,表明了最优路径选择方法的有效性。此外,深度学习模型能够高精度地预测所有方案的SOP,同时大大缩短了执行时间,为多跳能量收集物联网网络提供了实时配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信