{"title":"A note on the asymptotic behavior of radial solutions to quasilinear elliptic equations with a Hardy potential","authors":"K. Itakura, Satoshi Tanaka","doi":"10.1090/bproc/100","DOIUrl":null,"url":null,"abstract":"<p>The quasilinear elliptic equation with a Hardy potential <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal d normal i normal v left-parenthesis StartAbsoluteValue x EndAbsoluteValue Superscript alpha Baseline StartAbsoluteValue nabla u EndAbsoluteValue Superscript p minus 2 Baseline nabla u right-parenthesis plus StartFraction mu Over StartAbsoluteValue x EndAbsoluteValue Superscript p minus alpha Baseline EndFraction StartAbsoluteValue u EndAbsoluteValue Superscript p minus 2 Baseline u equals 0 in bold upper R Superscript upper N Baseline minus StartSet 0 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">d</mml:mi>\n <mml:mi mathvariant=\"normal\">i</mml:mi>\n <mml:mi mathvariant=\"normal\">v</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>+</mml:mo>\n <mml:mfrac>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>x</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n </mml:mfrac>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>p</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"1em\" />\n <mml:mtext>in</mml:mtext>\n <mml:mtext> </mml:mtext>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mi>N</mml:mi>\n </mml:msup>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} {\\mathrm {div}}(|x|^\\alpha |\\nabla u|^{p-2}\\nabla u) + \\frac {\\mu }{|x|^{p-\\alpha }}|u|^{p-2}u = 0 \\quad \\text {in} \\ {\\mathbf {R}}^N-\\{0\\} \\end{equation*}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</disp-formula>\n is considered, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N element-of bold upper N\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>N</mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">N</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">N\\in {\\mathbf {N}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha element-of bold upper R\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\alpha \\in {\\mathbf {R}}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu element-of bold upper R minus StartSet 0 EndSet\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">R</mml:mi>\n </mml:mrow>\n </mml:mrow>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu \\in {\\mathbf {R}}-\\{0\\}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this note, the asymptotic behaviors of radial solutions are obtained divided into three case <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu greater-than StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu >|(N-p+\\alpha )/p|^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu equals StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu =|(N-p+\\alpha )/p|^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu greater-than StartAbsoluteValue left-parenthesis upper N minus p plus alpha right-parenthesis slash p EndAbsoluteValue Superscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>N</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>p</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu >|(N-p+\\alpha )/p|^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This equation also appears as the Euler-Lagrange equation related to the weighted Hardy inequality <disp-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"integral Underscript normal upper Omega Endscripts StartAbsoluteValue nabla u left-parenthesis x right-parenthesis EndAbsoluteValue Superscript p Baseline StartAbsoluteValue x EndAbsoluteValue Superscript","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The quasilinear elliptic equation with a Hardy potential div(|x|α|∇u|p−2∇u)+μ|x|p−α|u|p−2u=0inRN−{0}\begin{equation*} {\mathrm {div}}(|x|^\alpha |\nabla u|^{p-2}\nabla u) + \frac {\mu }{|x|^{p-\alpha }}|u|^{p-2}u = 0 \quad \text {in} \ {\mathbf {R}}^N-\{0\} \end{equation*}
is considered, where N∈NN\in {\mathbf {N}}, p>1p>1 and α∈R\alpha \in {\mathbf {R}}, μ∈R−{0}\mu \in {\mathbf {R}}-\{0\}. In this note, the asymptotic behaviors of radial solutions are obtained divided into three case μ>|(N−p+α)/p|p\mu >|(N-p+\alpha )/p|^p, μ=|(N−p+α)/p|p\mu =|(N-p+\alpha )/p|^p and μ>|(N−p+α)/p|p\mu >|(N-p+\alpha )/p|^p. This equation also appears as the Euler-Lagrange equation related to the weighted Hardy inequality
具有哈代势的准线性椭圆方程 d i v ( | x | α |∇ u | p - 2∇ u ) + μ | x | p - α | u | p - 2 u = 0 in R N - { 0 } \开始{\mathrm {div}}(|x|^\alpha |\nabla u|^{p-2}\nabla u) + \frac {\mu }{x|^{p-\alpha }}|u|^{p-2}u = 0 \quad \text {in}\ {mathbf {R}}^N-\{0\}\end{equation*} 被考虑,其中 N ∈ N N\in {\mathbf {N}} , p > 1 p>1 and α ∈ R \alpha \ in {\mathbf {R}} , μ∈ R - {R}}. , μ ∈ R - { 0 } \in {mathbf {R}}-\{0\} .在本注释中,径向解的渐近行为分为三种情况 μ > | ( N - p + α ) / p | p \mu >|(N-p+\alpha )/p|^p , μ = | ( N - p + α ) / p | p \mu =|(N-p+\alpha )/p|^p 和 μ > | ( N - p + α ) / p | p \mu >|(N-p+\alpha )/p|^p .这个方程也是与加权哈代不等式相关的欧拉-拉格朗日方程 本文章由计算机程序翻译,如有差异,请以英文原文为准。