Dries Vante Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, F. Canavero
{"title":"Macromodeling based variability analysis of an inverted embedded microstrip line","authors":"Dries Vante Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, F. Canavero","doi":"10.1109/EPEPS.2011.6100213","DOIUrl":null,"url":null,"abstract":"A multivariate macromodel of the per unit length parameters of an inverted embedded microstrip line is built starting from a limited number of highly accurate but computationally expensive electromagnetic simulations. Besides the frequency dependency, the macromodel also encompasses the influence of a geometrical parameter that determines the shape of the cross-section of the metallic interconnect. This allows to assess the influence of the etching process through a variability analysis of the interconnect's behavior in both frequency and time domain. The analysis is carried out via a robust Monte Carlo approach, which has been made computationally feasible thanks to the macromodeling step.","PeriodicalId":313560,"journal":{"name":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPS.2011.6100213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A multivariate macromodel of the per unit length parameters of an inverted embedded microstrip line is built starting from a limited number of highly accurate but computationally expensive electromagnetic simulations. Besides the frequency dependency, the macromodel also encompasses the influence of a geometrical parameter that determines the shape of the cross-section of the metallic interconnect. This allows to assess the influence of the etching process through a variability analysis of the interconnect's behavior in both frequency and time domain. The analysis is carried out via a robust Monte Carlo approach, which has been made computationally feasible thanks to the macromodeling step.