Transmittance measurements of laser components using a combination of cavity ring-down and photometry

H. Cui, Y. Han, C. Gao, Y. Wang, B. Li
{"title":"Transmittance measurements of laser components using a combination of cavity ring-down and photometry","authors":"H. Cui, Y. Han, C. Gao, Y. Wang, B. Li","doi":"10.1117/12.2197779","DOIUrl":null,"url":null,"abstract":"A combined cavity ring-down (CRD) and photometry technique is employed to measure the transmittance of optical laser components in a range extending from below 0.01% to over 99.99%. In this combined technique, the conventional photometric configuration is used to measure, by ratioing the transmitted light power to the input power, the transmittance ranging from below 0.01% to over 99% with a typical relative uncertainty below 0.3%, and the CRD configuration is used to measure the transmittance higher than 99% with an uncertainty below 0.01%. Eight test samples with transmittance in the range of nearly 99.99% to approximately 0.013% are experimentally measured. Uncertainties of approximately 0.0001% for the transmittance of 99.9877% and of 0.003% for the transmittance of 0.013% are achieved with respectively the CRD and photometric schemes of a simple experimental apparatus. The experimental results showed that the combined technique is capable of measuring the transmittance of any practically fabricated optical laser components.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2197779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A combined cavity ring-down (CRD) and photometry technique is employed to measure the transmittance of optical laser components in a range extending from below 0.01% to over 99.99%. In this combined technique, the conventional photometric configuration is used to measure, by ratioing the transmitted light power to the input power, the transmittance ranging from below 0.01% to over 99% with a typical relative uncertainty below 0.3%, and the CRD configuration is used to measure the transmittance higher than 99% with an uncertainty below 0.01%. Eight test samples with transmittance in the range of nearly 99.99% to approximately 0.013% are experimentally measured. Uncertainties of approximately 0.0001% for the transmittance of 99.9877% and of 0.003% for the transmittance of 0.013% are achieved with respectively the CRD and photometric schemes of a simple experimental apparatus. The experimental results showed that the combined technique is capable of measuring the transmittance of any practically fabricated optical laser components.
结合腔衰荡和光度法测量激光元件的透光率
采用腔衰荡(CRD)和光度测量相结合的方法,测量了激光光学元件在0.01%到99.99%以上范围内的透射率。在该组合技术中,采用传统的光度测量配置,通过透射光功率与输入功率的比值,测量从0.01%到99%以上的透光率,典型的相对不确定度小于0.3%;采用CRD配置,测量高于99%的透光率,典型的相对不确定度小于0.01%。实验测量了透光率在99.99% ~ 0.013%之间的8种样品。采用简单实验装置的CRD方案和光度方案,在透过率为99.987%和0.013%的情况下,不确定度分别为0.0001%和0.003%。实验结果表明,该组合技术能够测量任何实际制造的光学激光元件的透射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信