Fault detection and classification approaches in transmission lines using artificial neural networks

Moez Ben Hessine, H. Jouini, S. Chebbi
{"title":"Fault detection and classification approaches in transmission lines using artificial neural networks","authors":"Moez Ben Hessine, H. Jouini, S. Chebbi","doi":"10.1109/MELCON.2014.6820588","DOIUrl":null,"url":null,"abstract":"This paper studies a new approach based on the artificial neural networks (ANN) for the fault detection and classification, in real time, in transmission lines to extra high voltage (EHV) which can be used in the production system digital protection. This approach is based on the treatment of each phase current and voltage. The outputs of the ANN indicate the fault presence and it type. The ANN detector and classifier are tested in various fault types, various locations, different fault resistances and various inception angle. All the test results show that the fault suggested detector and classifier can be used to support a new system generations of protection relay at high speed.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

This paper studies a new approach based on the artificial neural networks (ANN) for the fault detection and classification, in real time, in transmission lines to extra high voltage (EHV) which can be used in the production system digital protection. This approach is based on the treatment of each phase current and voltage. The outputs of the ANN indicate the fault presence and it type. The ANN detector and classifier are tested in various fault types, various locations, different fault resistances and various inception angle. All the test results show that the fault suggested detector and classifier can be used to support a new system generations of protection relay at high speed.
基于人工神经网络的输电线路故障检测与分类方法
本文研究了一种基于人工神经网络(ANN)的超高压输电线路故障实时检测与分类新方法,该方法可用于生产系统的数字保护。这种方法是基于对每个相电流和电压的处理。人工神经网络的输出指示故障的存在及其类型。在不同的故障类型、不同的故障位置、不同的故障电阻和不同的起始角度对人工神经网络检测器和分类器进行了测试。所有的测试结果表明,故障建议检测器和分类器可以用于支持新系统世代的高速保护继电器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信