Real-Time CNN Based ST Depression Episode Detection Using Single-Lead ECG

E. Tiryaki, Akshay Sonawane, L. Tamil
{"title":"Real-Time CNN Based ST Depression Episode Detection Using Single-Lead ECG","authors":"E. Tiryaki, Akshay Sonawane, L. Tamil","doi":"10.1109/ISQED51717.2021.9424275","DOIUrl":null,"url":null,"abstract":"A method for real monitoring of the heart for ST-depression episodes is described here. We have developed a convolutional neural network (CNN) based machine learning algorithm for classifying ECG signals into normal or ST-depression episodes of the heart with an accuracy over 92%. Our algorithm is capable of detecting ST-depression episodes of varying duration. The algorithm is evaluated using European ST-T Database. The best results obtained here are 0.95%, 0.98%, and 0.91% respectively for accuracy, sensitivity, and specificity.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A method for real monitoring of the heart for ST-depression episodes is described here. We have developed a convolutional neural network (CNN) based machine learning algorithm for classifying ECG signals into normal or ST-depression episodes of the heart with an accuracy over 92%. Our algorithm is capable of detecting ST-depression episodes of varying duration. The algorithm is evaluated using European ST-T Database. The best results obtained here are 0.95%, 0.98%, and 0.91% respectively for accuracy, sensitivity, and specificity.
基于CNN的实时ST段抑郁发作单导联检测
本文描述了一种对st段抑郁发作的心脏实时监测方法。我们开发了一种基于卷积神经网络(CNN)的机器学习算法,用于将ECG信号分类为心脏正常或st -压抑发作,准确率超过92%。我们的算法能够检测不同持续时间的st段抑郁发作。采用欧洲ST-T数据库对算法进行了评价。最佳结果分别为0.95%,0.98%和0.91%的准确性,灵敏度和特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信