Online Parameter Identification for Fractional Order Model of Lithium Ion Battery via Adaptive Genetic Algorithm

Bingjun Guo, Huanli Sun, Z. Zhao, Yixin Liu
{"title":"Online Parameter Identification for Fractional Order Model of Lithium Ion Battery via Adaptive Genetic Algorithm","authors":"Bingjun Guo, Huanli Sun, Z. Zhao, Yixin Liu","doi":"10.1109/DDCLS58216.2023.10166251","DOIUrl":null,"url":null,"abstract":"In order to overcome the shortcomings of the equivalent circuit model and the electrochemical model, a fractional impedance model is established based on the electrochemical impedance spectrum data, and the polarization effect is described in a simple and meaningful way using fractional elements. In this paper, we propose an online parameter identification method for fractional order model (FOM) of lithium ion battery, where an adaptive genetic algorithm is designed to estimation unknown parameters. To this end, an FOM is constructed by using the Grünwald-Letnikov (GL) definition. Then, an unscented kalman filter (UKF) method is adopted to estimate the internal model states. Based on the obtained states, an adaptive genetic algorithm (AGA) is designed to online identify the unknown parameters. Finally, comprehensive experimental verification results are provided to show the effectiveness of the proposed methods.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10166251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to overcome the shortcomings of the equivalent circuit model and the electrochemical model, a fractional impedance model is established based on the electrochemical impedance spectrum data, and the polarization effect is described in a simple and meaningful way using fractional elements. In this paper, we propose an online parameter identification method for fractional order model (FOM) of lithium ion battery, where an adaptive genetic algorithm is designed to estimation unknown parameters. To this end, an FOM is constructed by using the Grünwald-Letnikov (GL) definition. Then, an unscented kalman filter (UKF) method is adopted to estimate the internal model states. Based on the obtained states, an adaptive genetic algorithm (AGA) is designed to online identify the unknown parameters. Finally, comprehensive experimental verification results are provided to show the effectiveness of the proposed methods.
基于自适应遗传算法的锂离子电池分数阶模型参数在线辨识
为了克服等效电路模型和电化学模型的不足,基于电化学阻抗谱数据建立了分数阶阻抗模型,并利用分数阶元素对极化效应进行了简单而有意义的描述。本文提出了一种锂离子电池分数阶模型(FOM)的在线参数辨识方法,该方法采用自适应遗传算法对未知参数进行估计。为此,使用粗糙的 nwald- letnikov (GL)定义构造FOM。然后,采用无气味卡尔曼滤波(UKF)方法对模型内部状态进行估计。基于所获得的状态,设计了一种自适应遗传算法(AGA)对未知参数进行在线辨识。最后给出了全面的实验验证结果,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信