Motion Planning for Variable Topology Truss Modular Robot

Chao Liu, Sencheng Yu, Mark H. Yim
{"title":"Motion Planning for Variable Topology Truss Modular Robot","authors":"Chao Liu, Sencheng Yu, Mark H. Yim","doi":"10.15607/rss.2020.xvi.052","DOIUrl":null,"url":null,"abstract":"—Self-reconfigurable modular robots are composed of many modules that can be rearranged into various structures with respect to different activities and tasks. The variable topology truss (VTT) is a class of modular truss robot. These robots are able to change their shape by not only controlling joint positions which is similar to robots with fixed morphologies, but also reconfiguring the connections among modules in order to change their morphologies. Motion planning for VTT robots is difficult due to their non-fixed morphologies, high-dimensionality, potential for self-collision, and complex motion constraints. In this paper, a new motion planning algorithm to dramatically alter the structure of a VTT is presented, as well as some comparative tests to show its effectiveness.","PeriodicalId":231005,"journal":{"name":"Robotics: Science and Systems XVI","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2020.xvi.052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

—Self-reconfigurable modular robots are composed of many modules that can be rearranged into various structures with respect to different activities and tasks. The variable topology truss (VTT) is a class of modular truss robot. These robots are able to change their shape by not only controlling joint positions which is similar to robots with fixed morphologies, but also reconfiguring the connections among modules in order to change their morphologies. Motion planning for VTT robots is difficult due to their non-fixed morphologies, high-dimensionality, potential for self-collision, and complex motion constraints. In this paper, a new motion planning algorithm to dramatically alter the structure of a VTT is presented, as well as some comparative tests to show its effectiveness.
变拓扑桁架模块化机器人的运动规划
-自重构模块化机器人由许多模块组成,这些模块可以根据不同的活动和任务重新排列成不同的结构。可变拓扑桁架(VTT)是一类模块化桁架机器人。这些机器人不仅可以通过控制关节位置(类似于固定形态的机器人)来改变其形状,还可以通过重新配置模块之间的连接来改变其形态。由于VTT机器人的非固定形态、高维、自碰撞的可能性和复杂的运动约束,使得其运动规划变得困难。本文提出了一种新的运动规划算法,以大幅度改变VTT的结构,并进行了一些对比试验,以证明该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信