A Comprehensive Two Level Heuristic Approach to Transmission Expansion Planning

B. Murthy, P. Yemula, S. Khaparde
{"title":"A Comprehensive Two Level Heuristic Approach to Transmission Expansion Planning","authors":"B. Murthy, P. Yemula, S. Khaparde","doi":"10.1109/ICPST.2008.4745290","DOIUrl":null,"url":null,"abstract":"The transmission expansion planning (TEP) has long term effects on system performance. The effects are irreversible. The conventional optimization techniques have convergence problems for large system and heuristic methods reported so far are not holistic in nature. This paper proposes a two level approach. At first level, the usual static solution using linear approach is proposed. The objective is to minimize the cost along with overloads. The isolated nodes are handled by ZBUS formulation as described. The genetic algorithm (GA) is used as a heuristic approach to arrive at results. The plans are shortlisted with no overloads and least cost. The performance is tested for high rank contingencies and appropriate system strengthening is suggested. At second level, further strengthening of the network on short term basis is done with due consideration to reactive power balance in the grid. The reactive power support has to be incorporated since the AC model with reactive power limits can impose convergence problems. To overcome this, reactive power compensation (RPC) enhanced FDLF module with integrated reactive power planning based on set of heuristics is implemented. The TEP plans need to be evaluated for reactive power balance. This is accomplished by evaluating voltage stability margin index (VSMI). It identifies weaker lines prone to reactive power imbalance. The TEP plan reinforces grid to improve the weaker section. The proposed methodology is applied to IEEE 46-bus test system and results are discussed.","PeriodicalId":107016,"journal":{"name":"2008 Joint International Conference on Power System Technology and IEEE Power India Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Joint International Conference on Power System Technology and IEEE Power India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2008.4745290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The transmission expansion planning (TEP) has long term effects on system performance. The effects are irreversible. The conventional optimization techniques have convergence problems for large system and heuristic methods reported so far are not holistic in nature. This paper proposes a two level approach. At first level, the usual static solution using linear approach is proposed. The objective is to minimize the cost along with overloads. The isolated nodes are handled by ZBUS formulation as described. The genetic algorithm (GA) is used as a heuristic approach to arrive at results. The plans are shortlisted with no overloads and least cost. The performance is tested for high rank contingencies and appropriate system strengthening is suggested. At second level, further strengthening of the network on short term basis is done with due consideration to reactive power balance in the grid. The reactive power support has to be incorporated since the AC model with reactive power limits can impose convergence problems. To overcome this, reactive power compensation (RPC) enhanced FDLF module with integrated reactive power planning based on set of heuristics is implemented. The TEP plans need to be evaluated for reactive power balance. This is accomplished by evaluating voltage stability margin index (VSMI). It identifies weaker lines prone to reactive power imbalance. The TEP plan reinforces grid to improve the weaker section. The proposed methodology is applied to IEEE 46-bus test system and results are discussed.
输电网扩建规划的综合两级启发式方法
TEP (transmission expansion planning)对系统性能的影响是长期的。其影响是不可逆转的。传统的优化技术对于大系统存在收敛性问题,目前报道的启发式方法在本质上不是全局性的。本文提出了一个两层次的方法。首先,提出了常用的线性静态解。目标是最小化成本和过载。隔离节点按描述的ZBUS公式处理。遗传算法(GA)作为一种启发式方法来获得结果。入围的计划没有超载,成本最低。对高级别突发事件进行了性能测试,并提出了适当的系统强化建议。二是考虑电网无功平衡,短期内进一步加强电网。由于具有无功功率限制的交流模型可能会造成收敛问题,因此必须纳入无功功率支持。为解决这一问题,实现了无功补偿(RPC)增强FDLF模块,并基于一组启发式算法集成了无功规划。需要对TEP计划进行无功平衡评估。这是通过评估电压稳定裕度指数(VSMI)来实现的。它可以识别容易产生无功功率不平衡的较弱线路。TEP计划加强电网以改善较弱的部分。将该方法应用于IEEE 46总线测试系统,并对测试结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信