Morphologically realistic neural networks

R. C. Coelho, L. Costa
{"title":"Morphologically realistic neural networks","authors":"R. C. Coelho, L. Costa","doi":"10.1109/ICECCS.1997.622314","DOIUrl":null,"url":null,"abstract":"This paper presents how morphologically more realistic artificial neural networks have been obtained by using vectorial-stochastic grammars and used as subsidies for modeling biological neural systems and developing novel artificial neural structures. The paper includes the description of the vectorial-stochastic grammars, a review of the primate striate cortex, a mathematical analysis of the principles underlying orientation encoding by centric domains, and the development and application of morphologically realistic neural centric models of orientation encoding.","PeriodicalId":168372,"journal":{"name":"Proceedings. Third IEEE International Conference on Engineering of Complex Computer Systems (Cat. No.97TB100168)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Third IEEE International Conference on Engineering of Complex Computer Systems (Cat. No.97TB100168)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCS.1997.622314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents how morphologically more realistic artificial neural networks have been obtained by using vectorial-stochastic grammars and used as subsidies for modeling biological neural systems and developing novel artificial neural structures. The paper includes the description of the vectorial-stochastic grammars, a review of the primate striate cortex, a mathematical analysis of the principles underlying orientation encoding by centric domains, and the development and application of morphologically realistic neural centric models of orientation encoding.
形态逼真的神经网络
本文介绍了如何使用向量随机语法获得形态学上更逼真的人工神经网络,并将其用作生物神经系统建模和开发新型人工神经结构的补贴。本文包括向量随机语法的描述,灵长类动物纹状皮层的研究进展,中心域定向编码原理的数学分析,以及形态学逼真的定向编码神经中心模型的发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信