Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter

Martin Nachtsheim, Karina Grund, C. Endisch, R. Kennel
{"title":"Online Identification of Induction Machine Parameter Deviations for Aging Detection - A Comparative Study Using Recursive Least Squares Algorithm and Extended Kalman Filter","authors":"Martin Nachtsheim, Karina Grund, C. Endisch, R. Kennel","doi":"10.1109/ITEC55900.2023.10186964","DOIUrl":null,"url":null,"abstract":"The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.","PeriodicalId":234784,"journal":{"name":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC55900.2023.10186964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of electrical machines in automotive traction systems is rapidly increasing. To ensure operational safety, the machine behavior is monitored to detect failures or aging effects. Besides other approaches, online parameter identification is suited for real-time observation of the machine condition during operation. Two of the most established online parameter identification algorithms are the recursive least squares and the extended Kalman filter algorithm. In existing approaches the algorithms identify the absolute parameter values. In this paper the used identification models are modified to directly identify the parameter deviation related to the reference values. This results in an additional advantage in identifying operational parameter changes because nonlinear behavior is provided by the respective parameter reference. The performance of the proposed algorithms to monitor different electrical parameter changes is compared using an extended analytical induction machine model.
感应电机老化检测参数偏差在线识别——递推最小二乘算法与扩展卡尔曼滤波的比较研究
电机在汽车牵引系统中的应用正在迅速增加。为了确保操作安全,对机器行为进行监控,以检测故障或老化影响。除其他方法外,在线参数识别适合于在运行过程中实时观察机器状态。两种最成熟的在线参数辨识算法是递推最小二乘法和扩展卡尔曼滤波算法。在现有的方法中,算法识别绝对参数值。本文对原有的辨识模型进行了修正,直接辨识与参考值相关的参数偏差。这在识别操作参数变化方面带来了额外的优势,因为各自的参数引用提供了非线性行为。利用扩展的分析感应电机模型,比较了所提算法监测不同电参数变化的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信