de Morgan bisemilattices

J. Brzozowski
{"title":"de Morgan bisemilattices","authors":"J. Brzozowski","doi":"10.1109/ISMVL.2000.848616","DOIUrl":null,"url":null,"abstract":"We study de Morgan bisemilattices, which are algebras of the form (S, /spl cup/, /spl and/, /sup -/, 1, 0), where (S, /spl cup/, /spl and/) is a bisemilattice, 1 and 0 are the unit and zero elements of S, and /sup -/ is a unary operation, called quasi-complementation, that satisfies the involution law and de Morgan's laws. de Morgan bisemilattices are generalizations of de Morgan algebras, and have applications in multi-valued simulations of digital circuits. We present some basic observations about bisemilattices, and provide a set-theoretic characterization for a subfamily of de Morgan bisemilattices, which we call locally distributive de Morgan bilattices.","PeriodicalId":334235,"journal":{"name":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2000.848616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We study de Morgan bisemilattices, which are algebras of the form (S, /spl cup/, /spl and/, /sup -/, 1, 0), where (S, /spl cup/, /spl and/) is a bisemilattice, 1 and 0 are the unit and zero elements of S, and /sup -/ is a unary operation, called quasi-complementation, that satisfies the involution law and de Morgan's laws. de Morgan bisemilattices are generalizations of de Morgan algebras, and have applications in multi-valued simulations of digital circuits. We present some basic observations about bisemilattices, and provide a set-theoretic characterization for a subfamily of de Morgan bisemilattices, which we call locally distributive de Morgan bilattices.
我们研究了形式为(S, /spl cup/, /spl and/, /sup -/, 1,0)的de Morgan双半格,其中(S, /spl cup/, /spl and/)是一个半格,1和0是S的单位元和零元,/sup -/是一个一元运算,称为拟补,满足对合律和de Morgan定律。de Morgan半半格是de Morgan代数的推广,在数字电路的多值模拟中有广泛的应用。我们给出了关于半半格的一些基本观察,并给出了de Morgan半半格的一个亚族的集合论刻画,我们称之为局部分布de Morgan双格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信