Quad Mass Gyroscope with 16 ppm Frequency Mismatch Trimmed by Focus Ion Beam

Jianlin Chen, T. Tsukamoto, Shuji Tanaka
{"title":"Quad Mass Gyroscope with 16 ppm Frequency Mismatch Trimmed by Focus Ion Beam","authors":"Jianlin Chen, T. Tsukamoto, Shuji Tanaka","doi":"10.1109/ISISS.2019.8739610","DOIUrl":null,"url":null,"abstract":"This paper reports a frequency trimming method of a quad-mass MEMS gyroscope using focus ion beam (FIB). A quad-mass gyroscope (QMG) using the standard SOI MEMS process was developed. The relationship between trimming geometry and resonant frequency was estimated by finite element analysis (FEA) and validated by experiment. The resonant frequency mismatch was initially about 2791 ppm. The proposed trimming method enables to reduce the frequency mismatch as small as 16 ppm with a small change of Q factor.","PeriodicalId":162724,"journal":{"name":"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2019.8739610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper reports a frequency trimming method of a quad-mass MEMS gyroscope using focus ion beam (FIB). A quad-mass gyroscope (QMG) using the standard SOI MEMS process was developed. The relationship between trimming geometry and resonant frequency was estimated by finite element analysis (FEA) and validated by experiment. The resonant frequency mismatch was initially about 2791 ppm. The proposed trimming method enables to reduce the frequency mismatch as small as 16 ppm with a small change of Q factor.
四质量陀螺仪与16 ppm的频率不匹配的焦点离子束修剪
本文报道了一种利用聚焦离子束(FIB)对四质量MEMS陀螺仪进行频率微调的方法。研制了一种采用标准SOI MEMS工艺的四质量陀螺仪。通过有限元分析估计了切边几何形状与谐振频率之间的关系,并通过实验验证了其正确性。谐振频率失配最初约为2791 ppm。所提出的修整方法可以减少小到16 ppm的频率失配,而Q因子的变化很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信