부도확률 예측에서 미시정보와 거시정보의 역할 (The Role of Micro and Macro Information in the Measurement of Expected Default Frequency)

Chaehwan Won, Juhee Ban
{"title":"부도확률 예측에서 미시정보와 거시정보의 역할 (The Role of Micro and Macro Information in the Measurement of Expected Default Frequency)","authors":"Chaehwan Won, Juhee Ban","doi":"10.2139/SSRN.3016992","DOIUrl":null,"url":null,"abstract":"<b>Korean Abstract:</b> 기업의 부도가능성을 정확히 예측하는 것은 신용리스크(credit risk)측정을 위해 매우 중요하다. 부도를 예측하는 모형에는 기업내부의 미시정보를 이용하는 방법, 기업외부의 거시정보를 이용하는 방법, 그리고 미시정보와 거시정보를 통합하여 이용하는 방법이 있다. 선행연구들이 주로 첫번째 방법에 의존하고 있고, 최근 들어 두 번째 방법이 활용되고 있으나 가장 의미가 있는 세 번째 방법을 적용한 국내연구는 드물다. 따라서 본 연구에서는 세 번째 방법을 국내 기업들에 적용하여 그 중요성을 확인하는 것과, 국내 기업들의 신용리스크 측정과 관리에서 가장 중요한 변수는 무엇인지 탐색하는 것이 가장 중요한 목적이다. 실증분석 결과, 미시요인과 거시요인 모두를 고려했을 때 정확한 기업 부도예측이 가능하다는 것을 입증하였고, 국내기업 부도예측에 가장 중요한 미시변수는 수익성, 부채비율, 자산회전율이고, 거시변수는 환율과 단기금리로 나타났다. <br><br><b>English Abstract:</b> The accurate prediction of a firm’s default is essential in the credit risk management. There are three models in the prediction of default, such as the model using micro information in the inside of a firm, the model using macro economic information, and the integrated model using both micro and macro information together. It is true that most of the previous literature focused on the first type of micro model. Even though recently some researchers have interest in the second type of macro model, still it is not easy to find the third type of integrated model in our country. Therefore, the main goals of this study is to prove that the third integrated model is most powerful by applying the model to domestic firms and to find the factors that are most important for the default risk of domestic firms. From empirical analysis, we demonstrate that the integrated model using both micro and macro information is most powerful in default prediction and that profitability, debt-equity ratio, and asset turnover are key risk factors for micro information and foreign exchange rate and short-term interest rate are key factor for macro information.","PeriodicalId":166226,"journal":{"name":"Korea Deposit Insurance Corporation (KDIC) Research Paper Series","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korea Deposit Insurance Corporation (KDIC) Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.3016992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Korean Abstract: 기업의 부도가능성을 정확히 예측하는 것은 신용리스크(credit risk)측정을 위해 매우 중요하다. 부도를 예측하는 모형에는 기업내부의 미시정보를 이용하는 방법, 기업외부의 거시정보를 이용하는 방법, 그리고 미시정보와 거시정보를 통합하여 이용하는 방법이 있다. 선행연구들이 주로 첫번째 방법에 의존하고 있고, 최근 들어 두 번째 방법이 활용되고 있으나 가장 의미가 있는 세 번째 방법을 적용한 국내연구는 드물다. 따라서 본 연구에서는 세 번째 방법을 국내 기업들에 적용하여 그 중요성을 확인하는 것과, 국내 기업들의 신용리스크 측정과 관리에서 가장 중요한 변수는 무엇인지 탐색하는 것이 가장 중요한 목적이다. 실증분석 결과, 미시요인과 거시요인 모두를 고려했을 때 정확한 기업 부도예측이 가능하다는 것을 입증하였고, 국내기업 부도예측에 가장 중요한 미시변수는 수익성, 부채비율, 자산회전율이고, 거시변수는 환율과 단기금리로 나타났다.

English Abstract: The accurate prediction of a firm’s default is essential in the credit risk management. There are three models in the prediction of default, such as the model using micro information in the inside of a firm, the model using macro economic information, and the integrated model using both micro and macro information together. It is true that most of the previous literature focused on the first type of micro model. Even though recently some researchers have interest in the second type of macro model, still it is not easy to find the third type of integrated model in our country. Therefore, the main goals of this study is to prove that the third integrated model is most powerful by applying the model to domestic firms and to find the factors that are most important for the default risk of domestic firms. From empirical analysis, we demonstrate that the integrated model using both micro and macro information is most powerful in default prediction and that profitability, debt-equity ratio, and asset turnover are key risk factors for micro information and foreign exchange rate and short-term interest rate are key factor for macro information.
微观信息与宏观信息在破产概率预测中的作用(The Role of Micro and Macro Information in The Measurement of Expected Default Frequency)
Korean Abstract:正确预测企业破产的可能性对测定信用风险(credit risk)非常重要。预测破产的模型有利用企业内部微观信息的方法、利用企业外部宏观信息的方法、以及综合利用微观信息和宏观信息的方法。先行研究主要依赖于第一种方法,最近虽然使用第二种方法,但使用最有意义的第三种方法的国内研究却很少。因此本研究的最重要目的是将第三种方法应用于国内企业,确认其重要性,探索国内企业信用风险测定和管理中最重要的变数是什么。实证分析结果,微观因素和宏观因素都考虑了正确的时候,企业破产的预测证明是可能的,国内企业破产预测最重要的微观变量是收益性、负债比率、资产周转率,宏观变量的汇率和利率出现了。English Abstract: The accurate prediction of a firm ' s default is essential in The credit risk managementThere are three models in the prediction of default, such as the model using micro information in the inside of a firm, the model using macro economic informationintegrated model using both micro and macro information together。It is true that most of the previous literature focused on the first type of micro model。Even though recently some researchers have interest in the second type of macro model, still it is not easy to find the third type of integrated model in our country。therefore,the main goals of this study is to prove that the third integrated model is most powerful by applying the model to domestic firms and to find the factors that are most important for the default riskof domestic firms。From empirical analysis, we demonstrate that the integrated model using both micro and macro information is most powerful in default prediction and that profitability, debt-equity ratio,资源turnover are key risk factors for micro information and foreign exchange rate and short-term interest rate are key factor for macro information。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信