UNCERTAINTIES OF THE ESTIMATORS AND PARAMETERS OF DISTRIBUTION IN MEASUREMENTS WITH MULTIPLY OBSERVATIONS

M. Dorozhovets, A. Szlachta
{"title":"UNCERTAINTIES OF THE ESTIMATORS AND PARAMETERS OF DISTRIBUTION IN MEASUREMENTS WITH MULTIPLY OBSERVATIONS","authors":"M. Dorozhovets, A. Szlachta","doi":"10.23939/istcmtm2020.04.003","DOIUrl":null,"url":null,"abstract":"The article shows that the commonly used method of estimating the Type A uncertainty of measurements based on the standard deviation of estimators of population parameters does not meet the definition of uncertainty. For correct determination of the standard uncertainty, it is necessary to use the distribution of the corresponding population parameter at the values of population estimators determined from the experiment but not the probability distribution of the estimator. The joint probability distribution of population parameters can be derived by transforming the joint distribution of estimators using a Jacobian equal to the ratio of the scale parameter estimator to the population scale parameter itself. Independently on population distribution, the standard uncertainties of the location and scale parameters of the population depend on the number of observation n as a function of 3 1  n , i.e. can be determined when n ≥ 4. When the number of observations is small then the uncertainty value calculated by the usual method may differ significantly from the correct value. The given numerical example confirms this statement.","PeriodicalId":415989,"journal":{"name":"Measuring Equipment and Metrology","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measuring Equipment and Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/istcmtm2020.04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article shows that the commonly used method of estimating the Type A uncertainty of measurements based on the standard deviation of estimators of population parameters does not meet the definition of uncertainty. For correct determination of the standard uncertainty, it is necessary to use the distribution of the corresponding population parameter at the values of population estimators determined from the experiment but not the probability distribution of the estimator. The joint probability distribution of population parameters can be derived by transforming the joint distribution of estimators using a Jacobian equal to the ratio of the scale parameter estimator to the population scale parameter itself. Independently on population distribution, the standard uncertainties of the location and scale parameters of the population depend on the number of observation n as a function of 3 1  n , i.e. can be determined when n ≥ 4. When the number of observations is small then the uncertainty value calculated by the usual method may differ significantly from the correct value. The given numerical example confirms this statement.
多次观测测量中估计值和分布参数的不确定性
文章指出,根据群体参数估计值的标准偏差来估计测量的 A 类不确定度的常用方法不符合不确定度的定义。要正确确定标准不确定度,必须使用根据实验确定的种群参数估计值时相应种群参数的分布,而不是估计值的概率分布。利用雅各比等于比例参数估计值与人口比例参数本身的比值,对估计值的联合分布进行变换,可以得出人口参数的联合概率分布。与种群分布无关,种群位置参数和尺度参数的标准不确定性取决于观测值 n,是 3 1  n 的函数,即 n≥4 时可以确定。当观测数较少时,用通常方法计算出的不确定度值可能与正确值相差很大。给出的数字示例证实了这一说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信