Hardware Efficient NIPALS Architecture for Principal Component Analysis of Hyper Spectral Images

S. Kadiyala, V. Pudi, Mohit Garg, H. Ngo, S. Lam, T. Srikanthan
{"title":"Hardware Efficient NIPALS Architecture for Principal Component Analysis of Hyper Spectral Images","authors":"S. Kadiyala, V. Pudi, Mohit Garg, H. Ngo, S. Lam, T. Srikanthan","doi":"10.1109/SOCC46988.2019.1570555870","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) has been a major tool in performing characterization of environmental data where in, the data is typically a hyper spectral image. Using statistical methods, PCA is often capable of reducing the dimensionality of data. On the other hand Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm provides an efficient alternative for extracting the principal components with a minimum penalty on processing speed. In this work we provide the hardware implementation of NIPALS algorithm on an FPGA, for extracting principal components of a given dataset. Experimental results of our approach on various hyper spectral images show 92.31% average reduction in dimensionality with 0.1% average loss on information of the dataset. The results obtained from XILINX Artix-7 FPGA implementation show the advantage of the proposed method. More particularly, the proposed architecture gives an improvement in speed by factor of 15.71x compared to the state of art approaches.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570555870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Principal Component Analysis (PCA) has been a major tool in performing characterization of environmental data where in, the data is typically a hyper spectral image. Using statistical methods, PCA is often capable of reducing the dimensionality of data. On the other hand Nonlinear Iterative PArtial Least Squares (NIPALS) algorithm provides an efficient alternative for extracting the principal components with a minimum penalty on processing speed. In this work we provide the hardware implementation of NIPALS algorithm on an FPGA, for extracting principal components of a given dataset. Experimental results of our approach on various hyper spectral images show 92.31% average reduction in dimensionality with 0.1% average loss on information of the dataset. The results obtained from XILINX Artix-7 FPGA implementation show the advantage of the proposed method. More particularly, the proposed architecture gives an improvement in speed by factor of 15.71x compared to the state of art approaches.
高光谱图像主成分分析的硬件高效NIPALS结构
主成分分析(PCA)一直是环境数据表征的主要工具,其中数据通常是高光谱图像。使用统计方法,PCA通常能够降低数据的维数。另一方面,非线性迭代偏最小二乘(NIPALS)算法以最小的处理速度为代价,提供了一种有效的主成分提取方法。在这项工作中,我们在FPGA上提供NIPALS算法的硬件实现,用于提取给定数据集的主成分。实验结果表明,该方法在各种高光谱图像上的维数平均降低了92.31%,数据集信息平均损失了0.1%。XILINX Artix-7 FPGA实现结果表明了该方法的优越性。更具体地说,与目前最先进的方法相比,所提出的体系结构将速度提高了15.71倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信