Solution of Fuzzy Differential Equations with generalized differentiability using LU-parametric representation

B. Bede, Luciano Stefanini
{"title":"Solution of Fuzzy Differential Equations with generalized differentiability using LU-parametric representation","authors":"B. Bede, Luciano Stefanini","doi":"10.2991/eusflat.2011.106","DOIUrl":null,"url":null,"abstract":"The paper uses the LU-parametric representation of fuzzy numbers and fuzzy-valued functions, to obtain valid approxi- mations of fuzzy generalized derivative and to solve fuzzy differential equations. The main result is that a fuzzy differential initial-value problem can be translated into a system of innitely many ordinary differential equations and, by the LU-parametric representation, the innitely many equations can be approximated efciently by anite set of four ODEs. Some examples are included.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

The paper uses the LU-parametric representation of fuzzy numbers and fuzzy-valued functions, to obtain valid approxi- mations of fuzzy generalized derivative and to solve fuzzy differential equations. The main result is that a fuzzy differential initial-value problem can be translated into a system of innitely many ordinary differential equations and, by the LU-parametric representation, the innitely many equations can be approximated efciently by anite set of four ODEs. Some examples are included.
用lu参数表示求解广义可微模糊微分方程
本文利用模糊数和模糊值函数的lu参数表示,得到了模糊广义导数的有效逼近,求解了模糊微分方程。主要结果是模糊微分初值问题可以转化为由无穷多个常微分方程组成的方程组,并且通过lu参数表示,可以用四个ode的集合有效地逼近无穷多个常微分方程。包括一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信