Sparsity-aware distributed conjugate gradient algorithms for parameter estimation over sensor networks

Tamara Guerra Miller, Songcen Xu, R. D. Lamare, V. Nascimento, Y. Zakharov
{"title":"Sparsity-aware distributed conjugate gradient algorithms for parameter estimation over sensor networks","authors":"Tamara Guerra Miller, Songcen Xu, R. D. Lamare, V. Nascimento, Y. Zakharov","doi":"10.1109/ACSSC.2015.7421407","DOIUrl":null,"url":null,"abstract":"This paper proposes distributed adaptive algorithms based on the conjugate gradient (CG) method and the diffusion strategy for parameter estimation over sensor networks. We develop sparsity-aware conventional and modified distributed CG algorithms using ℓ1 and log-sum penalty functions. The proposed sparsity-aware diffusion distributed CG algorithms have an improved performance in terms of mean square deviation (MSD) and convergence rate as compared with the consensus least-mean square (Diffusion-LMS) algorithm, the diffusion CG algorithms and a close performance to the diffusion distributed recursive least squares (Diffusion-RLS) algorithm. Numerical results show that the proposed algorithms are reliable and can be applied in several scenarios.","PeriodicalId":172015,"journal":{"name":"2015 49th Asilomar Conference on Signals, Systems and Computers","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 49th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2015.7421407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper proposes distributed adaptive algorithms based on the conjugate gradient (CG) method and the diffusion strategy for parameter estimation over sensor networks. We develop sparsity-aware conventional and modified distributed CG algorithms using ℓ1 and log-sum penalty functions. The proposed sparsity-aware diffusion distributed CG algorithms have an improved performance in terms of mean square deviation (MSD) and convergence rate as compared with the consensus least-mean square (Diffusion-LMS) algorithm, the diffusion CG algorithms and a close performance to the diffusion distributed recursive least squares (Diffusion-RLS) algorithm. Numerical results show that the proposed algorithms are reliable and can be applied in several scenarios.
用于传感器网络参数估计的稀疏感知分布共轭梯度算法
提出了基于共轭梯度(CG)方法的分布式自适应算法和传感器网络参数估计的扩散策略。我们开发了稀疏感知的传统和改进的分布式CG算法,使用1和对数和惩罚函数。本文提出的稀疏感知扩散分布CG算法在均方差(MSD)和收敛速度方面均优于一致最小均方差(diffusion - lms)算法和扩散分布CG算法,性能接近扩散分布递归最小二乘(diffusion - rls)算法。数值计算结果表明,所提出的算法是可靠的,可以应用于多种场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信