Fabrication of multilayer ring transformer

Nga-yan Wong, H. Chan, C. Choy
{"title":"Fabrication of multilayer ring transformer","authors":"Nga-yan Wong, H. Chan, C. Choy","doi":"10.1109/ISAF.2002.1195928","DOIUrl":null,"url":null,"abstract":"Residual porosity is one of the most common defects found in multilayer ceramic structures. The pores are created in the binder burnout process when solvents and binders are released from the ceramic green body. Without a well-controlled compaction technique, defects between sheets in the stacked body often exist, leading to delamination problems. Also, it is difficult to fabricate a ring-shaped multilayer structure without cracks, especially near the center hole. Due to the difference in thermal expansion coefficients of the mould and the ceramic green body, large internal stress is often induced in the ceramic green body during hot pressing and cracks are initiated during sintering. In this work, the fabrication process of a lead zirconate titanate (PZT) ring-shaped multilayer to be used as a transformer is described. By a specially designed mould and adjustment of the hot pressing conditions, the internal stress induced during hot pressing has been reduced effectively. In particular, the hot pressing process is divided into two steps in order to reduce the clamping of the inner shaft by the ceramic green body. Therefore, the inner shaft can be released easily and the delamination problem can be improved. Also the binder burnout process has been designed carefully by studying the TGA profile. Scanning electron microscopy is used to study the cross-sectional area of the transformer. It is found that the resulting multilayer transformer did not have cracks, pores and delamination. The performance of the transformer will be measured and reported in later work.","PeriodicalId":415725,"journal":{"name":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAF.2002.1195928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Residual porosity is one of the most common defects found in multilayer ceramic structures. The pores are created in the binder burnout process when solvents and binders are released from the ceramic green body. Without a well-controlled compaction technique, defects between sheets in the stacked body often exist, leading to delamination problems. Also, it is difficult to fabricate a ring-shaped multilayer structure without cracks, especially near the center hole. Due to the difference in thermal expansion coefficients of the mould and the ceramic green body, large internal stress is often induced in the ceramic green body during hot pressing and cracks are initiated during sintering. In this work, the fabrication process of a lead zirconate titanate (PZT) ring-shaped multilayer to be used as a transformer is described. By a specially designed mould and adjustment of the hot pressing conditions, the internal stress induced during hot pressing has been reduced effectively. In particular, the hot pressing process is divided into two steps in order to reduce the clamping of the inner shaft by the ceramic green body. Therefore, the inner shaft can be released easily and the delamination problem can be improved. Also the binder burnout process has been designed carefully by studying the TGA profile. Scanning electron microscopy is used to study the cross-sectional area of the transformer. It is found that the resulting multilayer transformer did not have cracks, pores and delamination. The performance of the transformer will be measured and reported in later work.
多层环形变压器的研制
残余孔隙是多层陶瓷结构中最常见的缺陷之一。当溶剂和粘结剂从陶瓷坯体中释放出来时,在粘结剂燃尽过程中产生孔。如果压实技术控制不好,叠层体中往往存在片间缺陷,导致分层问题。此外,环形多层结构很难制造无裂纹,特别是在中心孔附近。由于模具与陶瓷坯体的热膨胀系数不同,在热压过程中往往会在陶瓷坯体中产生较大的内应力,在烧结过程中产生裂纹。本文介绍了一种用于变压器的锆钛酸铅(PZT)环形多层材料的制备工艺。通过特殊设计的模具和热压条件的调整,有效地降低了热压过程中产生的内应力。特别是,热压过程分为两步,以减少陶瓷绿体对内轴的夹紧。因此,可以轻松释放内轴,改善分层问题。通过对热重分析曲线的研究,对粘结剂的烧断过程进行了详细的设计。利用扫描电子显微镜对变压器的截面积进行了研究。结果表明,制备的多层变压器无裂纹、气孔和脱层现象。变压器的性能将在以后的工作中进行测量和报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信