{"title":"Rise-time effects in ggnMOSt under TLP stress","authors":"G. Boselli, A. Mouthaan, F. Kuper","doi":"10.1109/ICMEL.2000.840588","DOIUrl":null,"url":null,"abstract":"In this paper the main mechanisms that lead the turn on of the parasitic bipolar transistor of a grounded gate nMOS transistor (ggnMOS) under TLP stress have been analyzed in detail in the sub-nanoseconds range by means of a mixed-mode simulator. We showed that the breakdown voltage of the ggnMOS measured in static conditions would underestimate the maximum voltage across the protection structure obtained by TLP stress, depending on the rise-time of the applied pulse.","PeriodicalId":215956,"journal":{"name":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 22nd International Conference on Microelectronics. Proceedings (Cat. No.00TH8400)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEL.2000.840588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper the main mechanisms that lead the turn on of the parasitic bipolar transistor of a grounded gate nMOS transistor (ggnMOS) under TLP stress have been analyzed in detail in the sub-nanoseconds range by means of a mixed-mode simulator. We showed that the breakdown voltage of the ggnMOS measured in static conditions would underestimate the maximum voltage across the protection structure obtained by TLP stress, depending on the rise-time of the applied pulse.