Comparative analysis of Gaussian mixture model, logistic regression and random forest for big data classification using map reduce

Vikas Singh, Rahul K. Gupta, R. K. Sevakula, N. Verma
{"title":"Comparative analysis of Gaussian mixture model, logistic regression and random forest for big data classification using map reduce","authors":"Vikas Singh, Rahul K. Gupta, R. K. Sevakula, N. Verma","doi":"10.1109/ICIINFS.2016.8262961","DOIUrl":null,"url":null,"abstract":"In the era of modern world, big data becomes major transformation of new technology, The amount of data generated by mankind is growing every year. To classify such big data is a challenging task with standard data mining techniques. This paper presents a Map Reduce based algorithm with Gaussian mixture model(GMM), Logistic regression(LR) and Random forest classifier(RFC). While, map phase determines the probabilities and class labels of the test data, the reduce phase predicts the class labels of test data by aggregating results from all the mappers. We have analyzed these algorithms on the basis of test accuracy, run time and number of mappers on multiple big data sets.","PeriodicalId":234609,"journal":{"name":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2016.8262961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the era of modern world, big data becomes major transformation of new technology, The amount of data generated by mankind is growing every year. To classify such big data is a challenging task with standard data mining techniques. This paper presents a Map Reduce based algorithm with Gaussian mixture model(GMM), Logistic regression(LR) and Random forest classifier(RFC). While, map phase determines the probabilities and class labels of the test data, the reduce phase predicts the class labels of test data by aggregating results from all the mappers. We have analyzed these algorithms on the basis of test accuracy, run time and number of mappers on multiple big data sets.
基于图约简的高斯混合模型、逻辑回归和随机森林大数据分类的比较分析
在现代世界的时代,大数据成为重大变革的新技术,人类产生的数据量每年都在增长。用标准的数据挖掘技术对这样的大数据进行分类是一项具有挑战性的任务。本文提出了一种结合高斯混合模型(GMM)、逻辑回归(LR)和随机森林分类器(RFC)的Map Reduce算法。map阶段确定测试数据的概率和类标签,reduce阶段通过聚合来自所有映射器的结果来预测测试数据的类标签。我们根据测试精度、运行时间和映射器在多个大数据集上的数量对这些算法进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信