Kernel Extreme Learning Machine with Mixture Correntropy for Face Recognition

Bhawna Ahuja, V. P. Vishwakarma
{"title":"Kernel Extreme Learning Machine with Mixture Correntropy for Face Recognition","authors":"Bhawna Ahuja, V. P. Vishwakarma","doi":"10.1145/3549206.3549260","DOIUrl":null,"url":null,"abstract":"In this article, a robust kernel extreme learning machine (KELM) framework is designed using mixture correntropy for recognition of facial images. KELM is augmentation of ELM with kernel learning concept, has attained excellent performance in acknowledging numerous classification and regression problems. Due to random projection technique and no requisite of number of hidden neurons specified beforehand, KELM achieves better generalization performance than ELM. Since KELM is designed on MSE paradigm for Gaussian theory of noise, its efficiency may decrease for non-Gaussian cases. To enhance the learning speed and robustness of KELM, this work develops a new KELM framework with mixture correntropy (KELM-MXC) that opts mixture correntropy (MXC) as the optimization paradigm, instead of MSE. Experiments on face databases are performed to prove the effectiveness and comparison analogy with related state-of-the-art algorithms are reported to demonstrate the performance excellence of the presented algorithm.","PeriodicalId":199675,"journal":{"name":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549206.3549260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a robust kernel extreme learning machine (KELM) framework is designed using mixture correntropy for recognition of facial images. KELM is augmentation of ELM with kernel learning concept, has attained excellent performance in acknowledging numerous classification and regression problems. Due to random projection technique and no requisite of number of hidden neurons specified beforehand, KELM achieves better generalization performance than ELM. Since KELM is designed on MSE paradigm for Gaussian theory of noise, its efficiency may decrease for non-Gaussian cases. To enhance the learning speed and robustness of KELM, this work develops a new KELM framework with mixture correntropy (KELM-MXC) that opts mixture correntropy (MXC) as the optimization paradigm, instead of MSE. Experiments on face databases are performed to prove the effectiveness and comparison analogy with related state-of-the-art algorithms are reported to demonstrate the performance excellence of the presented algorithm.
用于人脸识别的混合熵核极限学习机
本文设计了一种基于混合熵的鲁棒核极限学习机(KELM)框架,用于人脸图像识别。KELM是利用核学习概念对ELM进行的扩展,在识别大量分类和回归问题方面取得了优异的成绩。由于采用随机投影技术,且不需要预先指定隐藏神经元的数量,KELM的泛化性能优于ELM。由于KELM是基于高斯噪声理论的MSE范式设计的,因此在非高斯情况下,KELM的效率可能会降低。为了提高KELM的学习速度和鲁棒性,本文提出了一种基于混合熵的KELM框架(KELM-MXC),该框架选择混合熵(MXC)作为优化范式,而不是MSE。在人脸数据库上进行了实验,证明了该算法的有效性,并与相关的最新算法进行了比较类比,证明了该算法的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信