Use of evidential reasoning for eliciting Bayesian subjective probabilities in human reliability analysis

Khalifa Mohamed Abujaafar, Zhuohua Qu, Zaili Yang, Jin Wang, Salman Nazir, Kjell Ivar Øvergård
{"title":"Use of evidential reasoning for eliciting Bayesian subjective probabilities in human reliability analysis","authors":"Khalifa Mohamed Abujaafar, Zhuohua Qu, Zaili Yang, Jin Wang, Salman Nazir, Kjell Ivar Øvergård","doi":"10.1109/SYSOSE.2016.7542948","DOIUrl":null,"url":null,"abstract":"Modelling the interdependencies among the nine common performance conditions (CPCs) in Cognitive Reliability Error Analysis Method (CREAM) stimulates the use of Bayesian Networks (BNs) in Human Reliability Analysis (HRA). However, subjective probability elicitation for a BN is often a daunting and complex task. To create conditional probability values for each given variable in a BN requires a high degree of knowledge and engineering effort, often from a group of domain experts. This paper presents a new hybrid approach for combining an ER algorithm with BNs to enable HRA under incomplete data. The kernel of this approach is to develop the best and the worst possible conditional degrees of belief of the nodes influencing Contextual Control Model Controlling Modes (COCOM-CMs) when using BNs to model human error quantification in CREAM. The findings on the hybrid evidential reasoning and BN model can effectively facilitate human failure probability analysis in CREAM in specific and decision making under uncertainty in general.","PeriodicalId":381280,"journal":{"name":"2016 11th System of Systems Engineering Conference (SoSE)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2016.7542948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Modelling the interdependencies among the nine common performance conditions (CPCs) in Cognitive Reliability Error Analysis Method (CREAM) stimulates the use of Bayesian Networks (BNs) in Human Reliability Analysis (HRA). However, subjective probability elicitation for a BN is often a daunting and complex task. To create conditional probability values for each given variable in a BN requires a high degree of knowledge and engineering effort, often from a group of domain experts. This paper presents a new hybrid approach for combining an ER algorithm with BNs to enable HRA under incomplete data. The kernel of this approach is to develop the best and the worst possible conditional degrees of belief of the nodes influencing Contextual Control Model Controlling Modes (COCOM-CMs) when using BNs to model human error quantification in CREAM. The findings on the hybrid evidential reasoning and BN model can effectively facilitate human failure probability analysis in CREAM in specific and decision making under uncertainty in general.
在人的可靠性分析中使用证据推理来引出贝叶斯主观概率
认知可靠性误差分析方法(CREAM)对九种常见性能条件(cpc)之间的相互依赖关系进行建模,促进了贝叶斯网络(BNs)在人类可靠性分析(HRA)中的应用。然而,BN的主观概率推导通常是一项艰巨而复杂的任务。为BN中的每个给定变量创建条件概率值需要高度的知识和工程努力,通常来自一组领域专家。本文提出了一种新的混合方法,将ER算法与bp网络相结合,实现不完全数据下的HRA。该方法的核心是开发影响上下文控制模型控制模式(COCOM-CMs)的节点的最佳和最差条件置信度,当使用bp网络模拟CREAM中的人为错误量化时。混合证据推理和BN模型的研究结果可以有效地促进在特定情况下的人为失效概率分析和不确定情况下的决策制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信