{"title":"Robust Object Tracking Based on Recurrent Neural Networks","authors":"F. Lotfi, V. Ajallooeian, H. Taghirad","doi":"10.1109/ICROM.2018.8657608","DOIUrl":null,"url":null,"abstract":"Object tracking through image sequences is one of the important components of many vision systems, and it has numerous applications in driver assistance systems such as pedestrian collision avoidance or collision mitigating systems. Blurred images produced by a rolling shutter camera or occlusions may easily disturb the object tracking system. In this article, a method based on convolutional and recurrent neural networks is presented to further enhance the performance and robustness of such trackers. It is proposed to use a convolutional neural network to detect an intended object and feed the tracker with found image. Moreover, by using this structure the tracker is updated every ′n′ frames. A recurrent neural network is designed to learn the object behavior for estimating and predicting its position in blurred frames or when it is occluded behind an obstacle. Real-time implementation of the proposed approach verifies its applicability for improvement of the trackers performance.","PeriodicalId":383818,"journal":{"name":"2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICROM.2018.8657608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Object tracking through image sequences is one of the important components of many vision systems, and it has numerous applications in driver assistance systems such as pedestrian collision avoidance or collision mitigating systems. Blurred images produced by a rolling shutter camera or occlusions may easily disturb the object tracking system. In this article, a method based on convolutional and recurrent neural networks is presented to further enhance the performance and robustness of such trackers. It is proposed to use a convolutional neural network to detect an intended object and feed the tracker with found image. Moreover, by using this structure the tracker is updated every ′n′ frames. A recurrent neural network is designed to learn the object behavior for estimating and predicting its position in blurred frames or when it is occluded behind an obstacle. Real-time implementation of the proposed approach verifies its applicability for improvement of the trackers performance.