Probabilistic VRU Trajectory Forecasting for Model-Predictive Planning A Case Study: Overtaking Cyclists

Jan Schneegans, Jan Eilbrecht, Stefan Zernetsch, Maarten Bieshaar, Konrad Doll, O. Stursberg, B. Sick
{"title":"Probabilistic VRU Trajectory Forecasting for Model-Predictive Planning A Case Study: Overtaking Cyclists","authors":"Jan Schneegans, Jan Eilbrecht, Stefan Zernetsch, Maarten Bieshaar, Konrad Doll, O. Stursberg, B. Sick","doi":"10.1109/ivworkshops54471.2021.9669208","DOIUrl":null,"url":null,"abstract":"This article examines probabilistic trajectory forecasting methods of vulnerable road users (VRU) for the motion planning of autonomous vehicles. The future trajectories of a cyclist are predicted by Quantile Surface Neural Networks (QSN) and Mixture Density Neural Networks (MDN), both modeling confidence regions around the cyclist’s expected locations. Confidence regions are approximated by different methods with varying degrees of complexity to bridge the gap between forecasting and planning. Model-Predictive Planning (MPP) based on these regions is used for the autonomous vehicle. The approach is evaluated using a case study regarding safe trajectory planning for overtaking cyclists. The experiments show the effectiveness of the approach. Different considerations on the use of combined probabilistic trajectory prediction and vehicle trajectory planning are included.","PeriodicalId":256905,"journal":{"name":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ivworkshops54471.2021.9669208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article examines probabilistic trajectory forecasting methods of vulnerable road users (VRU) for the motion planning of autonomous vehicles. The future trajectories of a cyclist are predicted by Quantile Surface Neural Networks (QSN) and Mixture Density Neural Networks (MDN), both modeling confidence regions around the cyclist’s expected locations. Confidence regions are approximated by different methods with varying degrees of complexity to bridge the gap between forecasting and planning. Model-Predictive Planning (MPP) based on these regions is used for the autonomous vehicle. The approach is evaluated using a case study regarding safe trajectory planning for overtaking cyclists. The experiments show the effectiveness of the approach. Different considerations on the use of combined probabilistic trajectory prediction and vehicle trajectory planning are included.
基于模型预测规划的概率VRU轨迹预测——以超车为例
本文研究了自动驾驶汽车运动规划中弱势道路使用者(VRU)的概率轨迹预测方法。通过分位表面神经网络(QSN)和混合密度神经网络(MDN)预测骑自行车者的未来轨迹,两者都在骑自行车者预期位置周围建模置信区域。用不同复杂程度的方法近似置信区域,以弥合预测和规划之间的差距。基于这些区域的模型预测规划(MPP)用于自动驾驶汽车。以超车安全轨迹规划为例,对该方法进行了评价。实验证明了该方法的有效性。结合概率轨迹预测和车辆轨迹规划的不同考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信