Wennie Tabib, K. Goel, John W. Yao, Mosam Dabhi, Curtis Boirum, Nathan Michael
{"title":"Real-Time Information-Theoretic Exploration with Gaussian Mixture Model Maps","authors":"Wennie Tabib, K. Goel, John W. Yao, Mosam Dabhi, Curtis Boirum, Nathan Michael","doi":"10.15607/RSS.2019.XV.061","DOIUrl":null,"url":null,"abstract":"This paper develops an exploration framework that leverages Gaussian mixture models (GMMs) for high-fidelity perceptual modeling and exploits the compactness of the distributions for information sharing in communications-constrained applications. State-of-the-art, high-resolution perceptual modeling techniques do not always consider the implications of transferring the model across limited bandwidth communications channels, which is critical for real-time information sharing. To bridge this gap in the state of the art, this paper presents a system that compactly represents sensor observations as GMMs and maintains a local occupancy grid map for a sampling-based motion planner that maximizes an information-theoretic objective function. The method is extensively evaluated in long duration simulations on an embedded PC and deployed to an aerial robot equipped with a 3D LiDAR. The result is significant memory efficiency as compared to state-of-the-art techniques.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
This paper develops an exploration framework that leverages Gaussian mixture models (GMMs) for high-fidelity perceptual modeling and exploits the compactness of the distributions for information sharing in communications-constrained applications. State-of-the-art, high-resolution perceptual modeling techniques do not always consider the implications of transferring the model across limited bandwidth communications channels, which is critical for real-time information sharing. To bridge this gap in the state of the art, this paper presents a system that compactly represents sensor observations as GMMs and maintains a local occupancy grid map for a sampling-based motion planner that maximizes an information-theoretic objective function. The method is extensively evaluated in long duration simulations on an embedded PC and deployed to an aerial robot equipped with a 3D LiDAR. The result is significant memory efficiency as compared to state-of-the-art techniques.