Supervised-Learning for Symbol Detection in Time Varying Channels

Daeun Kim, N. Lee
{"title":"Supervised-Learning for Symbol Detection in Time Varying Channels","authors":"Daeun Kim, N. Lee","doi":"10.1109/TENSYMP52854.2021.9550890","DOIUrl":null,"url":null,"abstract":"This paper presents a learning-based symbol detection method for time-varying inter-symbol-interference channels. Under the time-varying channel environment, accurate detection of the data symbols is challenging because of incomplete knowledge of instantaneous channel state information at the receiver. Inspired by an existing data-driven joint channel estimation and symbol detection method, our detection method is to adaptively learn the channel variation using a set of previously detected symbols as new training samples for the channel estimation. Using simulations, we show that the proposed online learning based symbol detection method outperforms the existing learning based symbol detection methods under moderate mobility scenarios.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a learning-based symbol detection method for time-varying inter-symbol-interference channels. Under the time-varying channel environment, accurate detection of the data symbols is challenging because of incomplete knowledge of instantaneous channel state information at the receiver. Inspired by an existing data-driven joint channel estimation and symbol detection method, our detection method is to adaptively learn the channel variation using a set of previously detected symbols as new training samples for the channel estimation. Using simulations, we show that the proposed online learning based symbol detection method outperforms the existing learning based symbol detection methods under moderate mobility scenarios.
时变信道中符号检测的监督学习
提出了一种基于学习的时变符号间干扰信道的符号检测方法。在时变信道环境下,由于接收机对瞬时信道状态信息的不完全了解,对数据符号的准确检测具有挑战性。受现有数据驱动的信道估计和符号检测联合方法的启发,我们的检测方法是使用一组先前检测到的符号作为信道估计的新训练样本,自适应地学习信道变化。仿真结果表明,本文提出的基于在线学习的符号检测方法在中等移动场景下优于现有的基于学习的符号检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信