{"title":"Compressed Locally Embedding","authors":"Jianbin Wu, Zhonglong Zheng","doi":"10.1109/CMSP.2011.138","DOIUrl":null,"url":null,"abstract":"The common strategy of Spectral manifold learning algorithms, e.g., Locally Linear Embedding (LLE) and Laplacian Eigenmap (LE), facilitates neighborhood relationships which can be constructed by $knn$ or $\\epsilon$ criterion. This paper presents a simple technique for constructing the nearest neighborhood based on the combination of $\\ell_{2}$ and $\\ell_{1}$ norm. The proposed criterion, called Locally Compressive Preserving (CLE), gives rise to a modified spectral manifold learning technique. Illuminated by the validated discriminating power of sparse representation, we additionally formulate the semi-supervised learning variation of CLE, SCLE for short, based on the proposed criterion to utilize both labeled and unlabeled data for inference on a graph. Extensive experiments on both manifold visualization and semi-supervised classification demonstrate the superiority of the proposed algorithm.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The common strategy of Spectral manifold learning algorithms, e.g., Locally Linear Embedding (LLE) and Laplacian Eigenmap (LE), facilitates neighborhood relationships which can be constructed by $knn$ or $\epsilon$ criterion. This paper presents a simple technique for constructing the nearest neighborhood based on the combination of $\ell_{2}$ and $\ell_{1}$ norm. The proposed criterion, called Locally Compressive Preserving (CLE), gives rise to a modified spectral manifold learning technique. Illuminated by the validated discriminating power of sparse representation, we additionally formulate the semi-supervised learning variation of CLE, SCLE for short, based on the proposed criterion to utilize both labeled and unlabeled data for inference on a graph. Extensive experiments on both manifold visualization and semi-supervised classification demonstrate the superiority of the proposed algorithm.