Compressed Locally Embedding

Jianbin Wu, Zhonglong Zheng
{"title":"Compressed Locally Embedding","authors":"Jianbin Wu, Zhonglong Zheng","doi":"10.1109/CMSP.2011.138","DOIUrl":null,"url":null,"abstract":"The common strategy of Spectral manifold learning algorithms, e.g., Locally Linear Embedding (LLE) and Laplacian Eigenmap (LE), facilitates neighborhood relationships which can be constructed by $knn$ or $\\epsilon$ criterion. This paper presents a simple technique for constructing the nearest neighborhood based on the combination of $\\ell_{2}$ and $\\ell_{1}$ norm. The proposed criterion, called Locally Compressive Preserving (CLE), gives rise to a modified spectral manifold learning technique. Illuminated by the validated discriminating power of sparse representation, we additionally formulate the semi-supervised learning variation of CLE, SCLE for short, based on the proposed criterion to utilize both labeled and unlabeled data for inference on a graph. Extensive experiments on both manifold visualization and semi-supervised classification demonstrate the superiority of the proposed algorithm.","PeriodicalId":309902,"journal":{"name":"2011 International Conference on Multimedia and Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Multimedia and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMSP.2011.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The common strategy of Spectral manifold learning algorithms, e.g., Locally Linear Embedding (LLE) and Laplacian Eigenmap (LE), facilitates neighborhood relationships which can be constructed by $knn$ or $\epsilon$ criterion. This paper presents a simple technique for constructing the nearest neighborhood based on the combination of $\ell_{2}$ and $\ell_{1}$ norm. The proposed criterion, called Locally Compressive Preserving (CLE), gives rise to a modified spectral manifold learning technique. Illuminated by the validated discriminating power of sparse representation, we additionally formulate the semi-supervised learning variation of CLE, SCLE for short, based on the proposed criterion to utilize both labeled and unlabeled data for inference on a graph. Extensive experiments on both manifold visualization and semi-supervised classification demonstrate the superiority of the proposed algorithm.
压缩局部嵌入
谱流形学习算法的常用策略,如局部线性嵌入(LLE)和拉普拉斯特征映射(LE),促进了邻域关系,这些邻域关系可以通过$knn$或$\epsilon$准则构造。本文提出了一种基于$\ell_{2}$和$\ell_{1}$范数组合构造最近邻的简单方法。提出的准则,称为局部压缩保持(CLE),提出了一种改进的谱流形学习技术。在稀疏表示的鉴别能力得到验证的启发下,我们基于所提出的准则,利用标记和未标记的数据在图上进行推理,进一步提出了CLE(简称SCLE)的半监督学习变异。大量的流形可视化和半监督分类实验证明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信