A Read Performance Analysis with Storage Hierarchy in Modern KVS: A RocksDB Case

Seehwan Yoo, Hojin Shin, Sunghyun Lee, Jongmoo Choi
{"title":"A Read Performance Analysis with Storage Hierarchy in Modern KVS: A RocksDB Case","authors":"Seehwan Yoo, Hojin Shin, Sunghyun Lee, Jongmoo Choi","doi":"10.1109/NVMSA56066.2022.00017","DOIUrl":null,"url":null,"abstract":"This paper presents a performance analysis of a modern key-value store (KVS), RocksDB. RocksDB runs with two major data structures, Memtable and SSTable. Memtable is an in-memory data structure while SSTable is an in-storage data structure where both implement the log-structured merge tree. Our experiments show that the read performance can be characterized by multiple parameters around the Memtable and SSTable. In specific, Memtable access latency is affected by 1) the traversal time of the in-memory data structure, skiplist, 2) micro-architecture parameters such as CPU cache and TLB, and 3) access pattern. SSTable access latency is influenced by 1) block cache utilization, 2) number of storage blocks accessed, and 3) interference of internal operations such as compaction. We believe that the result could be beneficial in developing modern KVS with predictable performance.","PeriodicalId":185204,"journal":{"name":"2022 IEEE 11th Non-Volatile Memory Systems and Applications Symposium (NVMSA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 11th Non-Volatile Memory Systems and Applications Symposium (NVMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NVMSA56066.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a performance analysis of a modern key-value store (KVS), RocksDB. RocksDB runs with two major data structures, Memtable and SSTable. Memtable is an in-memory data structure while SSTable is an in-storage data structure where both implement the log-structured merge tree. Our experiments show that the read performance can be characterized by multiple parameters around the Memtable and SSTable. In specific, Memtable access latency is affected by 1) the traversal time of the in-memory data structure, skiplist, 2) micro-architecture parameters such as CPU cache and TLB, and 3) access pattern. SSTable access latency is influenced by 1) block cache utilization, 2) number of storage blocks accessed, and 3) interference of internal operations such as compaction. We believe that the result could be beneficial in developing modern KVS with predictable performance.
基于存储层次的现代KVS读性能分析:以RocksDB为例
本文介绍了一个现代键值存储(KVS)——RocksDB的性能分析。RocksDB主要运行两种数据结构:Memtable和SSTable。Memtable是一个内存数据结构,而SSTable是一个存储数据结构,两者都实现了日志结构的合并树。我们的实验表明,读取性能可以通过围绕Memtable和SSTable的多个参数来表征。具体来说,Memtable访问延迟受到以下因素的影响:1)内存中数据结构的遍历时间,skiplist, 2)微架构参数(如CPU缓存和TLB),以及3)访问模式。SSTable访问延迟受以下因素影响:1)块缓存利用率;2)访问的存储块数量;3)内部操作(如压缩)的干扰。我们相信,这一结果可能有助于开发具有可预测性能的现代KVS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信