Decision level fusion schemes for a Multimodal Biometric System using local and global wavelet features

D. V. R. Devi, K. N. Rao
{"title":"Decision level fusion schemes for a Multimodal Biometric System using local and global wavelet features","authors":"D. V. R. Devi, K. N. Rao","doi":"10.1109/CONECCT50063.2020.9198547","DOIUrl":null,"url":null,"abstract":"Local and global features of biometric data play a vital role to improve the performance of a multimodal biometric system. In this paper, we propose three decision level fusion schemes - Local Decision Fusion (LDF), Global Decision Fusion (GDF) and Local-Global Decision Fusion (LGDF)- by exploiting local and global information. The proposed methods extract such information by utilizing low and high frequency wavelet sub-bands. Subsequently, the sub-bands are classified separately using nearest neighbor classifier, and the resulting classes are fused using weighted majority voting. The proposed LDF and GDF methods show an improvement in the average recognition rates to a maximum extent of 9.4%, 11%, 10.6% and 11.5% in comparison to unimodal LDF, GDF and two low frequency sub-band based methods respectively. Further, the proposed LGDF method is superior to feature-score hybrid fusion by a highest average recognition rate of 6.75%.","PeriodicalId":261794,"journal":{"name":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT50063.2020.9198547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Local and global features of biometric data play a vital role to improve the performance of a multimodal biometric system. In this paper, we propose three decision level fusion schemes - Local Decision Fusion (LDF), Global Decision Fusion (GDF) and Local-Global Decision Fusion (LGDF)- by exploiting local and global information. The proposed methods extract such information by utilizing low and high frequency wavelet sub-bands. Subsequently, the sub-bands are classified separately using nearest neighbor classifier, and the resulting classes are fused using weighted majority voting. The proposed LDF and GDF methods show an improvement in the average recognition rates to a maximum extent of 9.4%, 11%, 10.6% and 11.5% in comparison to unimodal LDF, GDF and two low frequency sub-band based methods respectively. Further, the proposed LGDF method is superior to feature-score hybrid fusion by a highest average recognition rate of 6.75%.
基于局部和全局小波特征的多模态生物识别系统决策级融合方案
生物识别数据的局部和全局特征对提高多模态生物识别系统的性能起着至关重要的作用。本文利用局部和全局信息,提出了三种决策级融合方案:局部决策融合(LDF)、全局决策融合(GDF)和局部-全局决策融合(LGDF)。该方法利用低频和高频小波子带提取这些信息。然后,使用最近邻分类器对子波段进行分类,并使用加权多数投票对分类结果进行融合。与单峰LDF、GDF和两种低频子带方法相比,LDF和GDF方法的平均识别率分别提高了9.4%、11%、10.6%和11.5%。此外,LGDF方法的平均识别率高达6.75%,优于特征分数混合融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信