Robust optimization of time series momentum portfolios

Jeremy Fague, Caio Almeida
{"title":"Robust optimization of time series momentum portfolios","authors":"Jeremy Fague, Caio Almeida","doi":"10.12660/RBFIN.V19N1.2021.82045","DOIUrl":null,"url":null,"abstract":"Mean-Variance Optimization (MVO) is well-known to be extremely sensitive to slight differences in the expected returns and covariances: if these measures change day to day, MVO can specify very different portfolios. Making wholesale changes in portfolio composition can cause the incremental gains to be negated by trading costs. We present a method for regularizing portfolio turnover by using the `1 penalty, with the amount of penalization informed by recent historical data. We find that this method dramatically reduces turnover, while preserving the efficiency of mean-variance optimization in terms of risk-adjusted return. Factoring in reasonable estimates of transaction costs, the turnover-regularized MVO portfolio substantially outperforms a leverageconstrained MVO approach, in terms of risk-adjusted return.","PeriodicalId":152637,"journal":{"name":"Brazilian Review of Finance","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Review of Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12660/RBFIN.V19N1.2021.82045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mean-Variance Optimization (MVO) is well-known to be extremely sensitive to slight differences in the expected returns and covariances: if these measures change day to day, MVO can specify very different portfolios. Making wholesale changes in portfolio composition can cause the incremental gains to be negated by trading costs. We present a method for regularizing portfolio turnover by using the `1 penalty, with the amount of penalization informed by recent historical data. We find that this method dramatically reduces turnover, while preserving the efficiency of mean-variance optimization in terms of risk-adjusted return. Factoring in reasonable estimates of transaction costs, the turnover-regularized MVO portfolio substantially outperforms a leverageconstrained MVO approach, in terms of risk-adjusted return.
时间序列动量组合的鲁棒优化
众所周知,平均方差优化(MVO)对预期收益和协方差的微小差异极为敏感:如果这些指标每天都在变化,MVO可以指定非常不同的投资组合。大规模改变投资组合的构成可能会导致增量收益被交易成本抵消。我们提出了一种通过使用' 1惩罚来规范投资组合周转的方法,惩罚的数量由最近的历史数据通知。我们发现,该方法显著减少了营业额,同时在风险调整收益方面保持了均值方差优化的效率。考虑到交易成本的合理估计,就风险调整收益而言,流动率规范化的MVO组合大大优于杠杆约束的MVO方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信