Polynomial completeness criteria in finite Boolean algebras

B. A. Romov
{"title":"Polynomial completeness criteria in finite Boolean algebras","authors":"B. A. Romov","doi":"10.1109/ISMVL.1996.508377","DOIUrl":null,"url":null,"abstract":"For a given finite Boolean algebra with r(r/spl ges/2) atoms we consider the set BF(r) of all polynomials produced by superpositions of the main operations and r atomic constants. Using the isomorphism between BF(r) and P, the arity-calibrated product of r two-valued logic algebras P/sub 2/, and also the description of all maximal subalgebras of P/sub 2//sup r/, we establish a general completeness criterion in BF(r), a Sheffer criterion for a single Boolean function to be a generating element in BF(r), and Slupecki type criterion in BF(r) as well.","PeriodicalId":403347,"journal":{"name":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 26th IEEE International Symposium on Multiple-Valued Logic (ISMVL'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1996.508377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For a given finite Boolean algebra with r(r/spl ges/2) atoms we consider the set BF(r) of all polynomials produced by superpositions of the main operations and r atomic constants. Using the isomorphism between BF(r) and P, the arity-calibrated product of r two-valued logic algebras P/sub 2/, and also the description of all maximal subalgebras of P/sub 2//sup r/, we establish a general completeness criterion in BF(r), a Sheffer criterion for a single Boolean function to be a generating element in BF(r), and Slupecki type criterion in BF(r) as well.
有限布尔代数中的多项式完备性准则
对于给定的具有r(r/spl ges/2)个原子的有限布尔代数,我们考虑由主要运算和r个原子常数的叠加产生的所有多项式的集合BF(r)。利用BF(r)与P的同构性、r个二值逻辑代数P/sub 2/的标尺积以及P/sub 2//sup r/的所有极大子代数的描述,建立了BF(r)中的一般完备性判据、BF(r)中单个布尔函数作为生成元的Sheffer判据和BF(r)中的Slupecki型判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信