Discrete-Time Approximate Optimization Algorithm for Intelligent Line Selection System

He Wang, Weile Chen, Haibo Du
{"title":"Discrete-Time Approximate Optimization Algorithm for Intelligent Line Selection System","authors":"He Wang, Weile Chen, Haibo Du","doi":"10.1109/IAI53119.2021.9619242","DOIUrl":null,"url":null,"abstract":"In this paper, the discrete-time optimization problem for transmission line planning for power systems is studied, in which the local cost function is considered. Firstly, a global cost function is constructed by using penalty function method. Secondly, for the optimization problem of intelligent line selection system, a discrete-time optimization algorithm is proposed. In the optimization algorithm design, the gradient of approximate cost function is used. In the proposed algorithm, the global optimal advantage of each sub-stage is selected, and the optimal advantage can be adjusted by penalty parameters. Compared with the traditional optimization algorithm, the convergence time and accuracy are improved. Finally, the example simulation results verify the effectiveness and superiority of the proposed discrete-time optimization algorithm.","PeriodicalId":106675,"journal":{"name":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","volume":"80 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI53119.2021.9619242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the discrete-time optimization problem for transmission line planning for power systems is studied, in which the local cost function is considered. Firstly, a global cost function is constructed by using penalty function method. Secondly, for the optimization problem of intelligent line selection system, a discrete-time optimization algorithm is proposed. In the optimization algorithm design, the gradient of approximate cost function is used. In the proposed algorithm, the global optimal advantage of each sub-stage is selected, and the optimal advantage can be adjusted by penalty parameters. Compared with the traditional optimization algorithm, the convergence time and accuracy are improved. Finally, the example simulation results verify the effectiveness and superiority of the proposed discrete-time optimization algorithm.
智能选线系统的离散时间近似优化算法
本文研究了考虑局部代价函数的电力系统输电线路规划离散优化问题。首先,利用罚函数法构造全局代价函数;其次,针对智能选线系统的优化问题,提出了离散时间优化算法。在优化算法设计中,采用了近似代价函数的梯度。该算法选取各子阶段的全局最优优势,并通过惩罚参数对最优优势进行调整。与传统的优化算法相比,提高了收敛时间和精度。最后,算例仿真结果验证了所提离散时间优化算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信