Analog circuits for mixed-signal neuromorphic computing architectures in 28 nm FD-SOI technology

Ning Qiao, G. Indiveri
{"title":"Analog circuits for mixed-signal neuromorphic computing architectures in 28 nm FD-SOI technology","authors":"Ning Qiao, G. Indiveri","doi":"10.1109/S3S.2017.8309203","DOIUrl":null,"url":null,"abstract":"Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.
28nm FD-SOI技术混合信号神经形态计算架构模拟电路
在先进的规模化工艺中开发混合信号模拟-数字神经形态电路提出了重大的设计挑战。我们提出了紧凑和节能的亚阈值模拟突触和神经元电路,针对28纳米FD-SOI工艺进行了优化,以实现大规模并行的大规模神经形态计算系统。我们描述了使用混合模式模拟/数字突触权重配置最大化密度的技术,以及采用最小化通道漏电流影响的方法,以实现基于pA-nA小电流的高效模拟计算。我们展示了基于最近贴出的新芯片的电路仿真结果,以展示电路如何在需要与环境实时交互的系统中用于低频操作,以及在不同类型的尖峰神经网络架构中用于快速数据处理的高频操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信