A brazilian study on data-driven public service readiness

A. Melo, A. M. Mariano
{"title":"A brazilian study on data-driven public service readiness","authors":"A. Melo, A. M. Mariano","doi":"10.23919/CISTI58278.2023.10211899","DOIUrl":null,"url":null,"abstract":"Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population’s poverty. This article aims to propose steps to improve agencies’ readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor $(37.7 \\%)$ has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).","PeriodicalId":121747,"journal":{"name":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 18th Iberian Conference on Information Systems and Technologies (CISTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CISTI58278.2023.10211899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population’s poverty. This article aims to propose steps to improve agencies’ readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor $(37.7 \%)$ has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).
一项关于数据驱动的公共服务准备的巴西研究
数据是公共部门数字化转型的引擎,其潜力在于改善社会福祉和消除人口贫困。本文旨在提出改进机构准备将其运营模式转变为数据驱动的公共服务(DDPS)的步骤。因此,基于对101名巴西公务员的问卷调查收集的数据,我们采用了定量的解释研究方法,通过结构方程来验证模型。结果表明,当使用偏最小二乘结构方程模型(PLS-SEM)时,作战能力因子(37.7%)对向DDPS过渡的准备程度影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信