Model Predictive Cell Zooming for Energy-Harvesting Small Cell Networks

M. Wakaiki, Katsuya Suto, K. Koiwa, Kang‐Zhi Liu, T. Zanma
{"title":"Model Predictive Cell Zooming for Energy-Harvesting Small Cell Networks","authors":"M. Wakaiki, Katsuya Suto, K. Koiwa, Kang‐Zhi Liu, T. Zanma","doi":"10.1109/ICC.2018.8422093","DOIUrl":null,"url":null,"abstract":"This paper addresses the real-time control of transmission power for small cell base stations (SBSs) exploiting energy- harvesting sources. We employ model predictive control and optimize an objective function that contains the number of users with a given quality of experience and the average state of charge. We first determine the number of active SBSs in the viewpoint of energy efficiency and then approximate the objective function. Finally, we illustrate the proposed method through a numerical example, comparing it with a static method based on statistical information.","PeriodicalId":387855,"journal":{"name":"2018 IEEE International Conference on Communications (ICC)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2018.8422093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the real-time control of transmission power for small cell base stations (SBSs) exploiting energy- harvesting sources. We employ model predictive control and optimize an objective function that contains the number of users with a given quality of experience and the average state of charge. We first determine the number of active SBSs in the viewpoint of energy efficiency and then approximate the objective function. Finally, we illustrate the proposed method through a numerical example, comparing it with a static method based on statistical information.
能量收集小蜂窝网络的模型预测小区缩放
本文研究了利用能量收集源的小型蜂窝基站发射功率的实时控制问题。我们采用模型预测控制并优化一个目标函数,该函数包含具有给定体验质量和平均充电状态的用户数量。我们首先从能源效率的角度确定有效的SBSs的数量,然后近似目标函数。最后,通过一个算例对所提出的方法进行了说明,并与基于统计信息的静态方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信