Space-Time Block Codes Based on Diagonalized Walsh-Hadamard Transform with Simple Decoupling

M. Baro, J. Ilow
{"title":"Space-Time Block Codes Based on Diagonalized Walsh-Hadamard Transform with Simple Decoupling","authors":"M. Baro, J. Ilow","doi":"10.1109/VETECF.2010.5594147","DOIUrl":null,"url":null,"abstract":"This paper presents space-time block codes (STBC) constructed by the orthogonalization of Walsh-Hadamard transform domain coefficients. The novel Walsh-Hadamard STBC (WHSTBC) provides full rate and full diversity order when the number of receive antennas is at least equal to the number of transmit antennas, with appropriate pre-coding of the PSK or QAM modulated symbols. Hadamard matrices exist for orders equal to N=2^n, where n >= 1 and lead to square WHSTBCs with minimal delay. The structure of WHSTBCs allow for simple decoupling and decoding. Simulation results and performance analysis are presented for N x N matrices with N=2, 4, and 8.","PeriodicalId":417714,"journal":{"name":"2010 IEEE 72nd Vehicular Technology Conference - Fall","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 72nd Vehicular Technology Conference - Fall","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VETECF.2010.5594147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents space-time block codes (STBC) constructed by the orthogonalization of Walsh-Hadamard transform domain coefficients. The novel Walsh-Hadamard STBC (WHSTBC) provides full rate and full diversity order when the number of receive antennas is at least equal to the number of transmit antennas, with appropriate pre-coding of the PSK or QAM modulated symbols. Hadamard matrices exist for orders equal to N=2^n, where n >= 1 and lead to square WHSTBCs with minimal delay. The structure of WHSTBCs allow for simple decoupling and decoding. Simulation results and performance analysis are presented for N x N matrices with N=2, 4, and 8.
基于简单解耦对角化Walsh-Hadamard变换的空时分组码
本文提出了由Walsh-Hadamard变换域系数正交化构造的空时分组码(STBC)。新颖的Walsh-Hadamard STBC (WHSTBC)在接收天线数量至少等于发射天线数量的情况下提供全速率和全分集顺序,并对PSK或QAM调制符号进行适当的预编码。当阶数为N=2^ N时,存在Hadamard矩阵,其中N >= 1,并导致具有最小延迟的方形whstbc。whstbc的结构允许简单的解耦和解码。给出了N × N矩阵(N=2、4、8)的仿真结果和性能分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信