Data Management in Smart Grid

S. Refaat, O. Ellabban, S. Bayhan, H. Abu-Rub, F. Blaabjerg, M. Begovic
{"title":"Data Management in Smart Grid","authors":"S. Refaat, O. Ellabban, S. Bayhan, H. Abu-Rub, F. Blaabjerg, M. Begovic","doi":"10.1002/9781119422464.ch10","DOIUrl":null,"url":null,"abstract":"The smart grid (SG) allows integration of renewable energy sources, distributed generation (DG) and storage systems. This chapter builds on the concepts of data management and analytics in SG to build the foundation needed for data analytics to transform Big Data for high‐value action. Big data sources in SG generally fall into two main categories; electric utility data sources and supplementary data sources. The Big Data system will store, process, and mine information in an efficient manner to enhance different SG services. The chapter presents a list of the most common big data tools utilized by successful analytics developers to store, manage, and analyze big data. Big Data needs additional convincing methods to handle the massive amount of information in a limited time span. Any data exchange in SG must be effectively protected through specific “Privacy Concerns” which have potential privacy impacts of SG and smart meter systems.","PeriodicalId":194769,"journal":{"name":"Smart Grid and Enabling Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Grid and Enabling Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119422464.ch10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The smart grid (SG) allows integration of renewable energy sources, distributed generation (DG) and storage systems. This chapter builds on the concepts of data management and analytics in SG to build the foundation needed for data analytics to transform Big Data for high‐value action. Big data sources in SG generally fall into two main categories; electric utility data sources and supplementary data sources. The Big Data system will store, process, and mine information in an efficient manner to enhance different SG services. The chapter presents a list of the most common big data tools utilized by successful analytics developers to store, manage, and analyze big data. Big Data needs additional convincing methods to handle the massive amount of information in a limited time span. Any data exchange in SG must be effectively protected through specific “Privacy Concerns” which have potential privacy impacts of SG and smart meter systems.
智能电网中的数据管理
智能电网(SG)允许可再生能源、分布式发电(DG)和存储系统的集成。本章以SG中的数据管理和分析概念为基础,为数据分析将大数据转化为高价值行动奠定基础。SG中的大数据源通常分为两大类;电力公用事业数据源及补充数据源。大数据系统将以高效的方式存储、处理和挖掘信息,以增强SG的不同服务。本章列出了成功的分析开发人员用来存储、管理和分析大数据的最常见的大数据工具。大数据需要额外的令人信服的方法来在有限的时间内处理大量信息。SG中的任何数据交换都必须通过特定的“隐私问题”得到有效保护,这对SG和智能电表系统有潜在的隐私影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信