A finite element approach for 3-dimensional simulation of layered acoustic wave transducers

S. Ippolito, K. Kalantar-zadeh, D. Powell, W. Wlodarski
{"title":"A finite element approach for 3-dimensional simulation of layered acoustic wave transducers","authors":"S. Ippolito, K. Kalantar-zadeh, D. Powell, W. Wlodarski","doi":"10.1109/COMMAD.2002.1237309","DOIUrl":null,"url":null,"abstract":"Layered Surface Acoustic Wave (SAW) transducers were fabricated and modelled by finite-element method. A comparison of the frequency response of the measured devices and simulated structures are presented. The transducer structure is based on a two-port delay line, employing x-cut, y-propagating lithium niobate (LiNbO/sub 3/) substrate and a thin film zinc oxide (ZnO) guiding layer. A finite-element approach was employed to simulate a 3-dimensional version of the fabricated device. A transient analysis was conducted, where electrical and mechanical boundary values were applied. Simulation results show good agreement with experimental results, indicating that a finite-element approach is appropriate for modelling layered SAW transducers.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"48 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Layered Surface Acoustic Wave (SAW) transducers were fabricated and modelled by finite-element method. A comparison of the frequency response of the measured devices and simulated structures are presented. The transducer structure is based on a two-port delay line, employing x-cut, y-propagating lithium niobate (LiNbO/sub 3/) substrate and a thin film zinc oxide (ZnO) guiding layer. A finite-element approach was employed to simulate a 3-dimensional version of the fabricated device. A transient analysis was conducted, where electrical and mechanical boundary values were applied. Simulation results show good agreement with experimental results, indicating that a finite-element approach is appropriate for modelling layered SAW transducers.
层状声波换能器三维仿真的有限元方法
制备了层状表面声波换能器,并用有限元方法对其进行了建模。给出了测量装置和模拟结构的频率响应比较。换能器结构基于双端口延迟线,采用x切割,y传播的铌酸锂(LiNbO/sub 3/)衬底和薄膜氧化锌(ZnO)引导层。采用有限元方法模拟了所制备器件的三维版本。进行了瞬态分析,其中应用了电气和机械边界值。仿真结果与实验结果吻合较好,表明采用有限元方法对层状声表面波换能器进行建模是合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信