Steps toward derandomizing RRTs

Stephen R. Lindemann, S. LaValle
{"title":"Steps toward derandomizing RRTs","authors":"Stephen R. Lindemann, S. LaValle","doi":"10.1109/ROMOCO.2004.240739","DOIUrl":null,"url":null,"abstract":"We present two new motion planning algorithms, based on the rapidly exploring random tree (RRT) family of algorithms. These algorithms represent the first work in the direction of derandomizing RRTs; this is a very challenging problem due to the way randomization is used in RRTs. In RRTs, randomization is used to create Voronoi bias, which causes the search trees to rapidly explore the state space. Our algorithms take steps to increase the Voronoi bias and to retain this property without the use of randomization. Studying these and related algorithms would improve our understanding of how efficient exploration can be accomplished, and would hopefully lead to improved planners. We give experimental results that illustrate how the new algorithms explore the state space and how they compare with existing RRT algorithms.","PeriodicalId":176081,"journal":{"name":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMOCO.2004.240739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We present two new motion planning algorithms, based on the rapidly exploring random tree (RRT) family of algorithms. These algorithms represent the first work in the direction of derandomizing RRTs; this is a very challenging problem due to the way randomization is used in RRTs. In RRTs, randomization is used to create Voronoi bias, which causes the search trees to rapidly explore the state space. Our algorithms take steps to increase the Voronoi bias and to retain this property without the use of randomization. Studying these and related algorithms would improve our understanding of how efficient exploration can be accomplished, and would hopefully lead to improved planners. We give experimental results that illustrate how the new algorithms explore the state space and how they compare with existing RRT algorithms.
非随机化RRTs的步骤
基于快速探索随机树(RRT)算法,提出了两种新的运动规划算法。这些算法代表了非随机化RRTs方向上的第一个工作;这是一个非常具有挑战性的问题,因为随机化是在rts中使用的。在RRTs中,随机化被用于产生Voronoi偏差,这使得搜索树能够快速地探索状态空间。我们的算法采取措施来增加Voronoi偏差,并在不使用随机化的情况下保留这一属性。研究这些和相关的算法将提高我们对如何有效地完成勘探的理解,并有望提高规划者的水平。我们给出了实验结果,说明了新算法如何探索状态空间,以及它们与现有RRT算法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信